List of the most distant astronomical objects

Last updated
JADES-GS-z13-0 is a distant galaxy. JADES-GS-z13-0.png
JADES-GS-z13-0 is a distant galaxy.

This article documents the most distant astronomical objects discovered and verified so far, and the time periods in which they were so classified.

Contents

For comparisons with the light travel distance of the astronomical objects listed below, the age of the universe since the Big Bang is currently estimated as 13.787±0.020 Gyr. [1]

Distances to remote objects, other than those in nearby galaxies, are nearly always inferred by measuring the cosmological redshift of their light. By their nature, very distant objects tend to be very faint, and these distance determinations are difficult and subject to errors. An important distinction is whether the distance is determined via spectroscopy or using a photometric redshift technique. The former is generally both more precise and also more reliable, in the sense that photometric redshifts are more prone to being wrong due to confusion with lower redshift sources that may have unusual spectra. For that reason, a spectroscopic redshift is conventionally regarded as being necessary for an object's distance to be considered definitely known, whereas photometrically determined redshifts identify "candidate" very distant sources. Here, this distinction is indicated by a "p" subscript for photometric redshifts.

The proper distance provides a measurement of how far a galaxy is at a fixed moment in time. At the present time the proper distance equals the comoving distance since the cosmological scale factor has value one: . The proper distance represents the distance obtained as if one were able to freeze the flow of time (set in the FLRW metric) and walk all the way to a galaxy while using a meter stick. [2] For practical reasons, the proper distance is calculated as the distance traveled by light (set in the FLRW metric) from the time of emission by a galaxy to the time an observer (on Earth) receives the light signal. It differs from the “light travel distance” since the proper distance takes into account the expansion of the universe, i.e. the space expands as the light travels through it, resulting in numerical values which locate the most distant galaxies beyond the Hubble sphere and therefore with recession velocities greater than the speed of light c. [3]    

Most distant spectroscopically-confirmed objects

Most distant astronomical objects with spectroscopic redshift determinations
ImageName Redshift
(z)
Light travel distance §
(Gly) [4] [5] [6] [7]
Proper distance

(Gly)

TypeNotes
JADES-GS-z13-0.png JADES-GS-z13-0 z = 13.20+0.04
−0.07
13.576 [4] / 13.596 [5] / 13.474 [6] / 13.473 [7] 33.6Galaxy Lyman-break galaxy, detection of the Lyman break with JWST/NIRSpec. [8] Possibly a dark star. [9]
UNCOVER-z13 galaxy.png UNCOVER-z13 z = 13.079+0.014
−0.001
13.5132.56GalaxyLyman-break galaxy, detection of the Lyman break with JWST/NIRSpec. [10]
JADES-GS-z12-0 z = 12.63+0.24
−0.08
13.556 [4] / 13.576 [5] / 13.454 [6] / 13.453 [7] 32.34GalaxyLyman-break galaxy, detection of the Lyman break with JWST/NIRCam [8] and JWST/NIRSpec [11] , and CIII] line emission with JWST/NIRSpec [12] . Most distant spectroscopic redshift from emission lines; most distant detection of non-primordial elements (C, O, Ne).
UNCOVER z12 and z13.jpg UNCOVER-z12 z = 12.393+0.004
−0.001
13.4832.21GalaxyLyman-break galaxy, detection of the Lyman break with JWST/NIRSpec. [10]
NASA-GLASS-z13-Context-JWST-20220722.jpg GLASS-z12 z = 12.117+0.01
−0.01
13.536 [4] / 13.556 [5] / 13.434 [6] / 13.433 [7] 33.2GalaxyLyman-break galaxy discovered by JWST/NIRCam, confirmed by ALMA detection of [O III] emission [13]
UDFj-39546284-hs-2011-05-c.jpg UDFj-39546284 z = 11.58+0.05
−0.05
13.512 [4] / 13.532 [5] / 13.410 [6] / 13.409 [7] 31.77GalaxyLyman-break galaxy, detection of the Lyman break with JWST/NIRSpec. [8] Possibly a dark star. [9]
CEERS J141946.36+525632.8
(Maisie's Galaxy)

[14]

z =11.44+0.09
−0.08
13.431.69GalaxyLyman-break galaxy discovered by JWST
CEERS2 588

[15]

z =11.0413.4531.45GalaxyLyman-break galaxy discovered by JWST
Distant galaxy GN-z11 in GOODS-N image by HST.jpg GN-z11 z = 10.6034 ± 0.001313.481 [4] / 13.501 [5] / 13.380 [6] / 13.379 [7] 31.18GalaxyLyman-break galaxy; detection of the Lyman break with HST at 5.5σ [16] and carbon emission lines with Keck/MOSFIRE at 5.3σ. [17] Conclusive redshift by JWST in February 2023 [18]
JADES-GS-z10-0 UDFj-39546284 z = 10.38+0.07
−0.06
13.449 [4] / 13.469 [5] / 13.348 [6] / 13.347 [7] 31.04GalaxyLyman-break galaxy, detection of the Lyman break with JWST/NIRSpec [8]
JD1-JWST-GLASS.pdf JD1z = 9.793±0.00213.409 [4] / 13.429 [5] / 13.308 [6] / 13.307 [7] 30.12GalaxyLyman-break galaxy, detection of the Lyman break with JWST/NIRSpec [19]
Gz9p3z=9.3127 ± 0.000213.277 [4] 30.27GalaxyA galaxy merger with a redshift estimated from [OII], Ne and H emission lines detected with JWST. [20]
Hubble and ALMA image of MACS J1149.5+2223.jpg MACS1149-JD1 z = 9.1096±0.000613.361 [4] / 13.381 [5] / 13.261 [6] / 13.260 [7] 30.37GalaxyDetection of hydrogen emission line with the VLT, and oxygen line with ALMA [21]
EGSY8p7 por el Hubble y Spitzer.jpg EGSY8p7 z = 8.683+0.001
−0.004
13.325 [4] / 13.345 [5] / 13.225 [6] / 13.224 [7] 30.05GalaxyLyman-alpha emitter; detection of Lyman-alpha with Keck/MOSFIRE at 7.5σ confidence [22]
SMACS-4590z = 8.49613.308 [4] / 13.328 [5] / 13.208 [6] / 13.207 [7] 29.71GalaxyDetection of hydrogen, oxygen, and neon emission lines with JWST/NIRSpec [23] [24] [25] [26]
A2744 YD4 z = 8.3813.297 [4] / 13.317 [5] / 13.197 [6] / 13.196 [7] 29.50GalaxyLyman-alpha and [O III] emission detected with ALMA at 4.0σ confidence [27]
MACS0416 Y1 z = 8.3118±0.000313.290 [4] / 13.310 [5] / 13.190 [6] / 13.189 [7] 29.44Galaxy[O III] emission detected with ALMA at 6.3σ confidence [28]
GRB 090423 z = 8.23+0.06
−0.07
13.282 [4] / 13.302 [5] / 13.182 [6] / 13.181 [7] 30 Gamma-ray burst Lyman-alpha break detected [29]
RXJ2129-11002 z = 8.16±0.0113.175 [4] 29.31Galaxy[O III] doublet, Hβ, and [O II] doublet as well as Lyman-alpha break detected with JWST/NIRSpec prism [30]
RXJ2129-11022 z = 8.15±0.0113.174 [4] 29.30Galaxy[O III] doublet and Hβ as well as Lyman-alpha break detected with JWST/NIRSpec prism [30]
Galaxy-EGS-zs8-1-20150505.jpg EGS-zs8-1 z = 7.7302±0.000613.228 [4] / 13.248 [5] / 13.129 [6] / 13.128 [7] 29.5GalaxyLyman-break galaxy [31]
SMACS-6355z = 7.66513.221 [4] / 13.241 [5] / 13.121 [6] / 13.120 [7] 28.83GalaxyDetection of hydrogen, oxygen, and neon emission lines with JWST/NIRSpec [23] [24] [25] [26]
z7_GSD_3811z = 7.6637±0.001113.221 [4] / 13.240 [5] / 13.121 [6] / 13.120 [7] 28.83GalaxyLyman-alpha emitter [32]
SMACS-10612z = 7.65813.221 [4] / 13.241 [5] / 13.120 [6] / 13.119 [7] 28.83GalaxyDetection of hydrogen, oxygen, and neon emission lines with JWST/NIRSpec [23] [24] [25] > [26]
QSO J0313–1806 z = 7.6423±0.001313.218 [4] / 13.238 [5] / 13.119 [6] / 13.118 [7] 30 Quasar Lyman-alpha break detected [33]
ULAS J1342+0928 z = 7.5413±0.000713.206 [4] / 13.226 [5] / 13.107 [6] / 13.106 [7] 29.36QuasarRedshift estimated from [C II] emission [34]
Z8 GND 5296.jpg z8_GND_5296 z = 7.5113.202 [4] / 13.222 [5] / 13.103 [6] / 13.102 [7] 30.01GalaxyLyman-alpha emitter [35]
A1689-zD1.jpg A1689-zD1 z = 7.5±0.213.201 [4] / 13.221 [5] / 13.102 [6] / 13.101 [7] 30GalaxyLyman-break galaxy [36]
GS2_1406z = 7.452±0.00313.195 [4] / 13.215 [5] / 13.096 [6] / 13.095 [7] 28.62GalaxyLyman-alpha emitter [37]
GN-108036.jpg GN-108036 z = 7.21313.164 [4] / 13.184 [5] / 13.065 [6] / 13.064 [7] 29GalaxyLyman alpha emitter [38]
SXDF-NB1006-2.jpeg SXDF-NB1006-2 z = 7.2120±0.000313.164 [4] / 13.184 [5] / 13.065 [6] / 13.064 [7] 29Galaxy[O III] emission detected [39]
ALMA witnesses assembly of galaxy in early Universe (annotated).jpg BDF-3299 z = 7.109±0.00213.149 [4] / 13.169 [5] / 13.051 [6] / 13.050 [7] 28.25GalaxyLyman-break galaxy [40]
ULAS J1120+0641.jpg ULAS J1120+0641 z = 7.085±0.00313.146 [4] / 13.166 [5] / 13.048 [6] / 13.047 [7] 29.85QuasarRedshift estimated from Si III]+C III] and Mg II emission lines [41]
A1703 zD6.jpg A1703 zD6 z = 7.045±0.00413.140 [4] / 13.160 [5] / 13.042 [6] / 13.041 [7] 29GalaxyGravitationally-lensed Lyman-alpha emitter [42]
BDF-521 z = 7.008±0.00213.135 [4] / 13.155 [5] / 13.037 [6] / 13.036 [7] 28.43GalaxyLyman-break galaxy [40]
G2_1408z = 6.972±0.00213.130 [4] / 13.150 [5] / 13.032 [6] / 13.030 [7] 28.10GalaxyLyman-alpha emitter [43]
IOK-1.jpg IOK-1 z = 6.96513.129 [4] / 13.149 [5] / 13.030 [6] / 13.029 [7] 28.09GalaxyLyman-alpha emitter [38]
LAE J095950.99+021219.1.jpg LAE J095950.99+021219.1 z = 6.94413.126 [4] / 13.146 [5] / 13.028 [6] / 13.027 [7] 28.07GalaxyLyman-alpha emitter [44]
SDF-46975z = 6.84413.111 [4] / 13.131 [5] / 13.013 [6] / 13.012 [7] 27.95GalaxyLyman-alpha emitter [38]
PSO J172.3556+18.7734 z = 6.823+0.003
−0.001
13.107 [4] / 13.127 [5] / 13.010 [6] / 13.009 [7] 27.93Quasar
(astrophysical jet)
Redshift estimated from Mg II emission [45]

§ The tabulated distance is the light travel distance, which has no direct physical significance. See discussion at distance measures and Observable Universe

† Numeric value obtained using Wright (2006) [5] with = 70, = 0.30, = 0.70.

Candidate most distant objects

Since the beginning of the James Webb Space Telescope's (JWST) science operations in June 2022, numerous distant galaxies far beyond what could be seen by the Hubble Space Telescope (z = 11) have been discovered thanks to the JWST's capability of seeing far into the infrared. [46] [47] Previously in 2012, there were about 50 possible objects z = 8 or farther, and another 100 candidates at z = 7, based on photometric redshift estimates released by the Hubble eXtreme Deep Field (XDF) project from observations made between mid-2002 and December 2012. [48] Some objects included here have been observed spectroscopically, but had only one emission line tentatively detected, and are therefore still considered candidates by researchers. [49] [50]

Notable candidates for most distant astronomical objects
Name Redshift
(z)
Light travel distance §
(Gly)
TypeNotes
F200DB-045 zp = 20.4+0.3
−0.3
[47]
or 0.70+0.19
−0.55
[46] or 0.40+0.15
−0.26
[51]
13.725 [4] / 13.745 [5] / 13.623 [6] / 13.621 [7] GalaxyLyman-break galaxy discovered by JWST [47]
NOTE: The redshift value of the galaxy presented by the procedure in one study [46] may differ from the values presented in other studies using different procedures. [47] [52] [51]
F200DB-175 zp = 16.2+0.3
−0.0
13.657 [4] / 13.677 [5] / 13.555 [6] / 13.554 [7] GalaxyLyman-break galaxy discovered by JWST [47]
S5-z17-1 z = 16.0089±0.0004
or 4.6108±0.0001
13.653 [4] / 13.673 [5] / 13.551 [6] / 13.550 [7] GalaxyLyman-break galaxy discovered by JWST; tentative (5.1σ) ALMA detection of a single emission line possibly attributed to either [C II] (z = 4.6108±0.0001) or [O III] (z = 16.0089±0.0004). [49] [50]
F150DB-041 zp = 16.0+0.2
−0.2
[47]
or 3.70+0.02
−0.59
[46]
13.653 [4] / 13.673 [5] / 13.551 [6] / 13.549 [7] GalaxyLyman-break galaxy discovered by JWST [47] [46]
SMACS-z16a zp = 15.92+0.17
−0.15
[53]
or 2.96+0.73
−0.21
[46]
13.651 [4] / 13.671 [5] / 13.549 [6] / 13.548 [7] GalaxyLyman-break galaxy discovered by JWST [53] [46]
F200DB-015 zp = 15.8+3.4
−0.1
13.648 [4] / 13.668 [5] / 13.546 [6] / 13.545 [7] GalaxyLyman-break galaxy discovered by JWST [47]
F200DB-181 zp = 15.8+0.5
−0.3
13.648 [4] / 13.668 [5] / 13.546 [6] / 13.545 [7] GalaxyLyman-break galaxy discovered by JWST [47]
F200DB-159 zp = 15.8+4.0
−15.2
13.648 [4] / 13.668 [5] / 13.546 [6] / 13.545 [7] GalaxyLyman-break galaxy discovered by JWST [47]
F200DB-086 zp = 15.4+0.6
−14.6
[47]
or 3.53+10.28
−1.84
[46]
13.639 [4] / 13.659 [5] / 13.537 [6] / 13.536 [7] GalaxyLyman-break galaxy discovered by JWST [47] [46]
SMACS-z16b zp = 15.32+0.16
−0.13
[53]
or 15.39+0.18
−0.26
[46]
13.637 [4] / 13.657 [5] / 13.535 [6] / 13.534 [7] GalaxyLyman-break galaxy discovered by JWST [53] [46]
F150DB-048 zp = 15.0+0.2
−0.8
13.629 [4] / 13.649 [5] / 13.527 [6] / 13.526 [7] GalaxyLyman-break galaxy discovered by JWST [47]
F150DB-007 zp = 14.6+0.4
−0.4
13.619 [4] / 13.639 [5] / 13.517 [6] / 13.516 [7] GalaxyLyman-break galaxy discovered by JWST [47]
F150DB-004 zp = 14.0+0.4
−2.0
13.602 [4] / 13.622 [5] / 13.500 [6] / 13.499 [7] GalaxyLyman-break galaxy discovered by JWST [47]
F150DB-079 zp = 13.8+0.5
−1.9
13.596 [4] / 13.616 [5] / 13.494 [6] / 13.493 [7] GalaxyLyman-break galaxy discovered by JWST [47]
F150DA-007 zp = 13.4+0.6
−2.0
13.583 [4] / 13.603 [5] / 13.481 [6] / 13.480 [7] GalaxyLyman-break galaxy discovered by JWST [47]
F150DA-053 zp = 13.4+0.3
−2.3
13.583 [4] / 13.603 [5] / 13.481 [6] / 13.480 [7] GalaxyLyman-break galaxy discovered by JWST [47]
F150DA-050 zp = 13.4+0.6
−10.0
13.583 [4] / 13.603 [5] / 13.481 [6] / 13.480 [7] GalaxyLyman-break galaxy discovered by JWST [47]
F150DA-058 zp = 13.4+0.6
−12.5
[47]
3.42+0.30
−0.20
[46]
13.583 [4] / 13.603 [5] / 13.481 [6] / 13.480 [7] GalaxyLyman-break galaxy discovered by JWST [47] [46]
F150DA-038 zp = 13.4+0.4
−13.2
13.583 [4] / 13.603 [5] / 13.481 [6] / 13.480 [7] GalaxyLyman-break galaxy discovered by JWST [47]
HD1 z = 13.2713.579 [4] / 13.599 [5] / 13.477 [6] / 13.476 [7] GalaxyNot yet spectroscopically confirmed. Guinness World Record of the most distant confirmed galaxy
Lyman-break galaxy (5σ confidence) followed with a tentative ALMA detection of a single [O III] oxygen emission line only (4σ confidence) [54]
F150DA-010 zp = 12.8+0.6
−1.5
13.562 [4] / 13.582 [5] / 13.460 [6] / 13.459 [7] GalaxyLyman-break galaxy discovered by JWST [47]
S5-z12-1 zp = 12.57+1.23
−0.46
13.553 [4] / 13.573 [5] / 13.452 [6] / 13.451 [7] GalaxyLyman-break galaxy discovered by JWST [49]
CEERS-27535 4 zp = 12.56+1.75
−0.27
13.553 [4] / 13.573 [5] / 13.452 [6] / 13.451 [7] GalaxyLyman-break galaxy discovered by JWST [55]
SMACS-1566 zp = 12.29+1.50
−0.44
13.542 [4] / 13.562 [5] / 13.441 [6] / 13.440 [7] GalaxyLyman-break galaxy discovered by JWST [55]
SMACS-z12b
(F150DA-077)
zp = 12.26+0.17
−0.16
[53] [46]
or 13.4+0.4
−1.7
[47]
13.541 [4] / 13.561 [5] / 13.440 [6] / 13.439 [7] GalaxyLyman-break galaxy discovered by JWST [53] [46] [47]
SMACS-z12a zp = 12.20+0.21
−0.12
13.539 [4] / 13.559 [5] / 13.437 [6] / 13.436 [7] GalaxyLyman-break galaxy discovered by JWST [53] [46]
CR2-z12-4 zp = 12.08+2.11
−1.25
13.534 [4] / 13.554 [5] / 13.432 [6] / 13.431 [7] GalaxyLyman-break galaxy discovered by JWST [49]
SMACS-10566 zp = 12.03+0.57
−0.26
13.532 [4] / 13.552 [5] / 13.430 [6] / 13.429 [7] GalaxyLyman-break galaxy discovered by JWST [55]
XDFH-2395446286 zp = 12.0+0.1
−0.2
13.530 [4] / 13.550 [5] / 13.429 [6] / 13.428 [7] GalaxyLyman-break galaxy detected by JWST and Hubble [56]
CR2-z12-2 zp = 11.96+1.44
−0.87
13.529 [4] / 13.549 [5] / 13.427 [6] / 13.426 [7] GalaxyLyman-break galaxy discovered by JWST [49]
9-BUSCAR zp = 11.91+0.10
−0.22
13.527 [4] / 13.547 [5] / 13.425 [6] / 13.424 [7] GalaxyLyman-break galaxy discovered by JWST [57]
SMACS-8347 zp = 11.90+0.27
−0.39
13.526 [4] / 13.546 [5] / 13.425 [6] / 13.424 [7] GalaxyLyman-break galaxy discovered by JWST [55]
CEERS-26409 4 zp = 11.90+1.60
−0.70
13.526 [4] / 13.546 [5] / 13.425 [6] / 13.424 [7] GalaxyLyman-break galaxy discovered by JWST [55]
F150DB-069 zp = 11.8+1.7
−0.2
13.522 [4] / 13.542 [5] / 13.420 [6] / 13.419 [7] GalaxyLyman-break galaxy discovered by JWST [47]
XDFH-2334046578 zp = 11.8+0.4
−0.5
13.522 [4] / 13.542 [5] / 13.420 [6] / 13.419 [7] GalaxyLyman-break galaxy detected by JWST and Hubble [56]
CR2-z12-3 zp = 11.66+0.69
−0.71
13.515 [4] / 13.535 [5] / 13.414 [6] / 13.413 [7] GalaxyLyman-break galaxy discovered by JWST [49]
CR2-z12-1 zp = 11.63+0.51
−0.53
13.514 [4] / 13.534 [5] / 13.413 [6] / 13.412 [7] GalaxyLyman-break galaxy discovered by JWST [49]
F150DB-088 zp = 11.6+0.3
−0.2
13.513 [4] / 13.533 [5] / 13.411 [6] / 13.410 [7] GalaxyLyman-break galaxy discovered by JWST [47]
F150DB-084 zp = 11.6+0.4
−0.4
13.513 [4] / 13.533 [5] / 13.411 [6] / 13.410 [7] GalaxyLyman-break galaxy discovered by JWST [47]
F150DB-044 zp = 11.4+0.4
−11.3
13.503 [4] / 13.523 [5] / 13.402 [6] / 13.401 [7] GalaxyLyman-break galaxy discovered by JWST [47]
XDFH-2404647339 zp = 11.4+0.4
−0.5
13.503 [4] / 13.523 [5] / 13.402 [6] / 13.401 [7] GalaxyLyman-break galaxy detected by JWST and Hubble [56]
F150DB-075 zp = 11.4+0.4
−0.1
[47]
0.04+0.01
−0.01
[46]
13.503 [4] / 13.523 [5] / 13.402 [6] / 13.401 [7] GalaxyLyman-break galaxy discovered by JWST [47] [46]
F150DA-062 zp = 11.4+0.3
−0.3
[47]
1.78+0.20
−0.08
[46]
13.503 [4] / 13.523 [5] / 13.402 [6] / 13.401 [7] GalaxyLyman-break galaxy discovered by JWST [47] [46]
CEERS-127682 zp = 11.40+0.59
−0.51
13.503 [4] / 13.523 [5] / 13.402 [6] / 13.401 [7] GalaxyLyman-break galaxy discovered by JWST [55]
CEERS-5268 2 zp = 11.40+0.30
−1.11
13.503 [4] / 13.523 [5] / 13.402 [6] / 13.401 [7] GalaxyLyman-break galaxy discovered by JWST [55]
F150DA-060 zp = 11.4+0.6
−8.2
13.503 [4] / 13.523 [5] / 13.402 [6] / 13.401 [7] GalaxyLyman-break galaxy discovered by JWST [47]
F150DA-031 zp = 11.4+1.0
−8.2
13.503 [4] / 13.523 [5] / 13.402 [6] / 13.401 [7] GalaxyLyman-break galaxy discovered by JWST [47]
F150DA-052 zp = 11.4+0.8
−10.6
13.503 [4] / 13.523 [5] / 13.402 [6] / 13.401 [7] GalaxyLyman-break galaxy discovered by JWST [47]
F150DB-054 zp = 11.4+0.5
−10.8
13.503 [4] / 13.523 [5] / 13.402 [6] / 13.401 [7] GalaxyLyman-break galaxy discovered by JWST [47]
SMACS-z11d zp = 11.28±0.32
or 2.35+0.30
−0.67
GalaxyLyman-break galaxy discovered by JWST [46]
CEERS-77241 zp = 11.27+0.39
−0.70
GalaxyLyman-break galaxy discovered by JWST [55]
CEERS-6647 zp = 11.27+0.58
−0.28
GalaxyLyman-break galaxy discovered by JWST [55]
CEERS-622 4 zp = 11.27+0.48
−0.60
GalaxyLyman-break galaxy discovered by JWST [55]
SMACS-z11c zp = 11.22±0.32
or 3.84+0.05
−0.04
GalaxyLyman-break galaxy discovered by JWST [46]
SMACS-z11b zp = 11.22±0.56
or 6.94+0.07
−0.07
GalaxyLyman-break galaxy discovered by JWST [46]
F150DA-005 zp = 11.2+0.4
−0.3
GalaxyLyman-break galaxy discovered by JWST [47]
F150DA-020 zp = 11.2+0.2
−7.9
GalaxyLyman-break galaxy discovered by JWST [47]
CEERS-61486 zp = 11.15+0.37
−0.35
GalaxyLyman-break galaxy discovered by JWST [55]
SMACS-z11e
(F150DA-081)
zp = 11.10+0.21
−0.34
[46]
or 13.4+0.6
−2.2
[47]
GalaxyLyman-break galaxy discovered by JWST [46] [47]
SMACS-z11a zp = 11.05+0.09
−0.08
[53]
or 1.73+0.18
−0.04
[46]
GalaxyLyman-break galaxy discovered by JWST [53] [46]
CR3-z12-1 zp = 11.05+2.24
−0.47
GalaxyLyman-break galaxy discovered by JWST [49]
F150DA-026 zp = 11.0+0.5
−0.3
GalaxyLyman-break galaxy discovered by JWST [47]
F150DA-036 zp = 11.0+0.4
−7.8
GalaxyLyman-break galaxy discovered by JWST [47]
SMACS-z10e zp = 10.89+0.16
−0.14
[53]
or 1.38+1.37
−0.24
[46]
GalaxyLyman-break galaxy discovered by JWST [53] [46]
F150DB-040 zp = 10.8+0.3
−0.2
GalaxyLyman-break galaxy discovered by JWST [47]
EGS-14506 zp = 10.71+0.34
−0.62
GalaxyLyman-break galaxy discovered by JWST [58]
MACS0647-JD zp = 10.6±0.3Galaxy Gravitationally lensed into three images by a galaxy cluster; detected by JWST and Hubble [59] [60]
GLASS-z10
(GLASS-1698) [55]
z = 10.38GalaxyLyman-break galaxy discovered by JWST; tentative (4.4σ) ALMA detection of [O III] emission line only [61] [62]
EGS-7860 zp = 10.11+0.60
−0.82
GalaxyLyman-break galaxy discovered by JWST [58]
SPT0615-JD zp = 9.9+0.8
−0.6
13.419 [4] Galaxy [63]
A2744-JD zp≅9.813.412 [4] GalaxyGalaxy is being magnified and lensed into three multiple images, geometrically supporting its redshift. [64] [65]
MACS1149-JD1 zp≅9.613.398 [4] [66] Candidate galaxy or protogalaxy [67]
GRB 090429B zp≅9.413.383 [4] [68] Gamma-ray burst [69] The photometric redshift in this instance has quite large uncertainty, with the lower limit for the redshift being z>7.
UDFy-33436598 zp≅8.613.317 [4] Candidate galaxy or protogalaxy [70]
UDFy-38135539 zp≅8.613.317 [4] Candidate galaxy or protogalaxyA spectroscopic redshift of z = 8.55 was claimed for this source in 2010, [71] but has subsequently been shown to be mistaken. [72]
BoRG-58 zp≅813.258 [4] Galaxy cluster or protocluster Protocluster candidate [73]

§ The tabulated distance is the light travel distance, which has no direct physical significance. See discussion at distance measures and Observable Universe

List of most distant objects by type

Most distant object by type
TypeObjectRedshift
(distance)
Notes
Any astronomical object, no matter what type JADES-GS-z13-0 z = 13.20Most distant galaxy with a spectroscopically-confirmed redshift as of December 2022. [8] These are data from Webb science in progress as of 9 December 2022, which has not yet been through the peer-review process. The estimated light-travel distance is about 13.6 billion light-years (and a proper distance of approximately 33.6  billion light-years (10.3 billion parsecs ) from Earth due to the Universe's expansion since the light we now observe left it about 13.6 billion years ago). [5]
Galaxy or protogalaxy
Galaxy cluster CL J1001+0220 z ≅ 2.506As of 2016 [74]
Galaxy supercluster Hyperion proto-supercluster z = 2.45This supercluster at the time of its discovery in 2018 was the earliest and largest proto-supercluster found to date. [75]
Galaxy protocluster A2744z7p9OD z = 7.88This protocluster at the time of its discovery in 2023 was the most distant protocluster found and spectroscopically confirmed to date. [76]
Quasar UHZ1 z ~ 10.0 [77]
Black hole [77]
Star or protostar or post-stellar corpse
(detected by an event)
Progenitor of GRB 090423 z = 8.2 [78] [29] Note, GRB 090429B has a photometric redshift zp≅9.4, [79] and so is most likely more distant than GRB 090423, but is lacking spectroscopic confirmation. Estimated an approximate distance of 13 billion lightyears from Earth
Star or protostar or post-stellar corpse
(detected as a star)
WHL0137-LS (Earendel) z = 6.2 ± 0.1
(12.9 G ly)
Most distant individual star detected (March, 2022). [80] [81]

Previous records include SDSS J1229+1122 [82] and MACS J1149 Lensed Star 1. [83]

Star cluster The Sparkler z = 1.378
(13.9 G ly)
Galaxy with globular clusters gravitationally lensed in SMACS J0723.3-7327 [84]
System of star clusters
X-ray jet PJ352–15 quasar jetz = 5.831
(12.7 G ly) [85]
The previous recordholder was at 12.4 Gly. [86] [87]
Microquasar XMMU J004243.6+412519 (2.5 Mly)First extragalactic microquasar discovered [88] [89] [90]
Nebula-like object Himiko z = 6.595Possibly one of the largest objects in the early universe. [91] [92]
Magnetic field 9io9 z = 2.554 (11.1 Gly)Observations from ALMA has shown that the lensed galaxy 9io9 contains a magnetic field.
Planet SWEEPS-11 / SWEEPS-04 (27,710 ly) [93]
  • An analysis of the lightcurve of the microlensing event PA-99-N2 suggests the presence of a planet orbiting a star in the Andromeda Galaxy. [94]
  • A controversial microlensing event of lobe A of the double gravitationally lensed Q0957+561 suggests that there is a planet in the lensing galaxy lying at redshift 0.355 (3.7 Gly). [95] [96]
Most distant event by type
TypeEventRedshiftNotes
Gamma-ray burst GRB 090423 z = 8.2 [78] [29] Note, GRB 090429B has a photometric redshift zp≅9.4, [79] and so is most likely more distant than GRB 090423, but is lacking spectroscopic confirmation.
Core collapse supernova SN 1000+0216 z = 3.8993 [97]
Type Ia supernova SN UDS10Wil z = 1.914 [98]
Type Ia supernova SN SCP-0401
(Mingus)
z = 1.71First observed in 2004, it was not until 2013 that it could be identified as a Type-Ia SN. [99] [100]
Cosmic Decoupling Cosmic Microwave Background Radiation creationz~1000 to 1089 [101] [102]

Timeline of most distant astronomical object recordholders

Objects in this list were found to be the most distant object at the time of determination of their distance. This is frequently not the same as the date of their discovery.

Distances to astronomical objects may be determined through parallax measurements, use of standard references such as cepheid variables or Type Ia supernovas, or redshift measurement. Spectroscopic redshift measurement is preferred, while photometric redshift measurement is also used to identify candidate high redshift sources. The symbol z represents redshift.

Most Distant Object Titleholders (not including candidates based on photometric redshifts)
ObjectTypeDateDistance
(z = Redshift)
Notes
JADES-GS-z13-0 Galaxy2022 - presentz = 13.20 [8]
GN-z11 Galaxy2016–2022z = 10.6 [16] [17]
EGSY8p7 Galaxy2015  2016z = 8.68 [103] [104] [105] [106]
Progenitor of GRB 090423 / Remnant of GRB 090423 Gamma-ray burst progenitor / Gamma-ray burst remnant 2009  2015z = 8.2 [29] [107]
IOK-1 Galaxy 2006  2009z = 6.96 [107] [108] [109] [110]
SDF J132522.3+273520 Galaxy2005  2006z = 6.597 [110] [111]
SDF J132418.3+271455 Galaxy2003  2005z = 6.578 [111] [112] [113] [114]
HCM-6A Galaxy2002  2003z = 6.56The galaxy is lensed by galaxy cluster Abell 370. This was the first non-quasar galaxy found to exceed redshift 6. It exceeded the redshift of quasar SDSSp J103027.10+052455.0 of z = 6.28 [112] [113] [115] [116] [117] [118]
SDSS J1030+0524
(SDSSp J103027.10+052455.0)
Quasar 2001  2002z = 6.28 [119] [120] [121] [122] [123] [124]
SDSS 1044–0125
(SDSSp J104433.04–012502.2)
Quasar2000  2001z = 5.82 [125] [126] [123] [124] [127] [128] [129]
SSA22-HCM1 Galaxy1999  2000z>=5.74 [130] [131]
HDF 4-473.0 Galaxy1998  1999z = 5.60 [131]
RD1 (0140+326 RD1)Galaxy1998z = 5.34 [132] [133] [134] [131] [135]
CL 1358+62 G1 & CL 1358+62 G2 Galaxies1997  1998z = 4.92These were the most remote objects discovered at the time. The pair of galaxies were found lensed by galaxy cluster CL1358+62 (z = 0.33). This was the first time since 1964 that something other than a quasar held the record for being the most distant object in the universe. [133] [136] [137] [134] [131] [138]
PC 1247–3406 Quasar1991  1997z = 4.897 [125] [139] [140] [141] [142]
PC 1158+4635 Quasar1989  1991z = 4.73 [125] [142] [143] [144] [145] [146]
Q0051–279 Quasar1987  1989z = 4.43 [147] [143] [146] [148] [149] [150]
Q0000–26
(QSO B0000–26)
Quasar1987z = 4.11 [147] [143] [151]
PC 0910+5625
(QSO B0910+5625)
Quasar1987z = 4.04This was the second quasar discovered with a redshift over 4. [125] [143] [152] [153]
Q0046–293
(QSO J0048–2903)
Quasar1987z = 4.01 [147] [143] [152] [154] [155]
Q1208+1011
(QSO B1208+1011)
Quasar1986  1987z = 3.80This is a gravitationally-lensed double-image quasar, and at the time of discovery to 1991, had the least angular separation between images, 0.45. [152] [156] [157]
PKS 2000-330
(QSO J2003–3251, Q2000–330)
Quasar1982  1986z = 3.78 [152] [158] [159]
OQ172
(QSO B1442+101)
Quasar1974  1982z = 3.53 [160] [161] [162]
OH471
(QSO B0642+449)
Quasar1973  1974z = 3.408Nickname was "the blaze marking the edge of the universe". [160] [162] [163] [164] [165]
4C 05.34 Quasar1970  1973z = 2.877Its redshift was so much greater than the previous record that it was believed to be erroneous, or spurious. [162] [166] [167] [168]
5C 02.56
(7C 105517.75+495540.95)
Quasar1968  1970z = 2.399 [138] [168] [169]
4C 25.05
(4C 25.5)
Quasar1968z = 2.358 [138] [168] [170]
PKS 0237–23
(QSO B0237–2321)
Quasar1967  1968z = 2.225 [166] [170] [171] [172] [173]
4C 12.39
(Q1116+12, PKS 1116+12)
Quasar1966  1967z = 2.1291 [138] [173] [174] [175]
4C 01.02
(Q0106+01, PKS 0106+1)
Quasar1965  1966z = 2.0990 [138] [173] [174] [176]
3C 9 Quasar1965z = 2.018 [173] [177] [178] [179] [180] [181]
3C 147 Quasar1964  1965z = 0.545 [182] [183] [184] [185]
3C 295 Radio galaxy 1960  1964z = 0.461 [131] [138] [186] [187] [188]
LEDA 25177 (MCG+01-23-008) Brightest cluster galaxy 1951  1960z = 0.2
(V = 61000 km/s)
This galaxy lies in the Hydra Supercluster. It is located at B1950.0 08h 55m 4s+03° 21 and is the BCG of the fainter Hydra Cluster Cl 0855+0321 (ACO 732). [131] [188] [189] [190] [191] [192] [193]
LEDA 51975 (MCG+05-34-069)Brightest cluster galaxy1936 –z = 0.13
(V = 39000 km/s)
The brightest cluster galaxy of the Bootes Cluster (ACO 1930), an elliptical galaxy at B1950.0 14h 30m 6s+31° 46 apparent magnitude 17.8, was found by Milton L. Humason in 1936 to have a 40,000 km/s recessional redshift velocity. [192] [194] [195]
LEDA 20221 (MCG+06-16-021)Brightest cluster galaxy1932 –z = 0.075
(V = 23000 km/s)
This is the BCG of the Gemini Cluster (ACO 568) and was located at B1950.0 07h 05m 0s+35° 04 [194] [196]
BCG of WMH Christie's Leo ClusterBrightest cluster galaxy1931  1932z =
(V = 19700 km/s)
[196] [197] [198] [199]
BCG of Baede's Ursa Major ClusterBrightest cluster galaxy1930  1931z =
(V = 11700 km/s)
[199] [200]
NGC 4860 Galaxy1929  1930z = 0.026
(V = 7800 km/s)
[200] [201] [202]
NGC 7619 Galaxy1929z = 0.012
(V = 3779 km/s)
Using redshift measurements, NGC 7619 was the highest at the time of measurement. At the time of announcement, it was not yet accepted as a general guide to distance, however, later in the year, Edwin Hubble described redshift in relation to distance, which became accepted widely as an inferred distance. [201] [203] [204]
NGC 584
(Dreyer nebula 584)
Galaxy1921  1929z = 0.006
(V = 1800 km/s)
At the time, nebula had yet to be accepted as independent galaxies. However, in 1923, galaxies were generally recognized as external to the Milky Way. [192] [201] [203] [205] [206] [207] [208]
M104 (NGC 4594)Galaxy1913  1921z = 0.004
(V = 1180 km/s)
This was the second galaxy whose redshift was determined; the first being Andromeda – which is approaching us and thus cannot have its redshift used to infer distance. Both were measured by Vesto Melvin Slipher. At this time, nebula had yet to be accepted as independent galaxies. NGC 4594 was measured originally as 1000 km/s, then refined to 1100, and then to 1180 in 1916. [201] [205] [208]
Arcturus
(Alpha Bootis)
Star 1891  1910160 ly
(18 mas)
(this is very inaccurate, true=37 ly)
This number is wrong; originally announced in 1891, the figure was corrected in 1910 to 40 ly (60 mas). From 1891 to 1910, it had been thought this was the star with the smallest known parallax, hence the most distant star whose distance was known. Prior to 1891, Arcturus had previously been recorded of having a parallax of 127 mas. [209] [210] [211] [212]
Capella
(Alpha Aurigae)
Star 1849-189172 ly
(46 mas)
[213] [214] [215]
Polaris
(Alpha Ursae Minoris)
Star1847 - 184950 ly
(80 mas)
(this is very inaccurate, true=~375 ly)
[216] [217]
Vega
(Alpha Lyrae)
Star (part of a double star pair)1839 - 18477.77 pc
(125 mas)
[216]
61 Cygni Binary star 1838  18393.48 pc
(313.6 mas)
This was the first star other than the Sun to have its distance measured. [216] [218] [219]
Uranus Planet of the Solar System1781  183818 AU This was the last planet discovered before the first successful measurement of stellar parallax. It had been determined that the stars were much farther away than the planets.
Saturn Planet of the Solar System1619  178110 AUFrom Kepler's Third Law, it was finally determined that Saturn is indeed the outermost of the classical planets, and its distance derived. It had only previously been conjectured to be the outermost, due to it having the longest orbital period, and slowest orbital motion. It had been determined that the stars were much farther away than the planets.
Mars Planet of the Solar System1609  16192.6 AU when Mars is diametrically opposed to EarthKepler correctly characterized Mars and Earth's orbits in the publication Astronomia nova. It had been conjectured that the fixed stars were much farther away than the planets.
Sun Star3rd century BC — 1609380 Earth radii (very inaccurate, true=16000 Earth radii) Aristarchus of Samos made a measurement of the distance of the Sun from the Earth in relation to the distance of the Moon from the Earth. The distance to the Moon was described in Earth radii (20, also inaccurate). The diameter of the Earth had been calculated previously. At the time, it was assumed that some of the planets were further away, but their distances could not be measured. The order of the planets was conjecture until Kepler determined the distances from the Sun of the five known planets that were not Earth. It had been conjectured that the fixed stars were much farther away than the planets.
Moon Moon of a planet3rd century BC20 Earth radii (very inaccurate, true=64 Earth radii) Aristarchus of Samos made a measurement of the distance between the Earth and the Moon. The diameter of the Earth had been calculated previously.
  • z represents redshift, a measure of recessional velocity and inferred distance due to cosmological expansion
  • mas represents parallax, a measure of angle and distance can be determined through trigonometry

List of objects by year of discovery that turned out to be most distant

This list contains a list of most distant objects by year of discovery of the object, not the determination of its distance. Objects may have been discovered without distance determination, and were found subsequently to be the most distant known at that time. However, object must have been named or described. An object like OJ 287 is ignored even though it was detected as early as 1891 using photographic plates, but ignored until the advent of radiotelescopes.

Examples
Year of recordModern
light travel distance (Mly)
ObjectTypeDetected usingFirst record by (1)
9642.5 [220] Andromeda Galaxy Spiral galaxy naked eye Abd al-Rahman al-Sufi [221]
16543 Triangulum Galaxy Spiral galaxy refracting telescope Giovanni Battista Hodierna [222]
177968 [223] Messier 58 Barred spiral galaxy refracting telescope Charles Messier [224]
178576.4 [225] NGC 584 Galaxy William Herschel
1880s206 ± 29 [226] NGC 1 Spiral galaxy Dreyer, Herschel
19592,400 [227] 3C 273 Quasar Parkes Radio Telescope Maarten Schmidt, Bev Oke [228]
19605,000 [229] 3C 295 Radio galaxy Palomar Observatory Rudolph Minkowski
Data missing from table
200913,000 [230] GRB 090423 Gamma-ray burst progenitor Swift Gamma-Ray Burst Mission Krimm, H. et al. [231]

See also

Related Research Articles

<span class="mw-page-title-main">Quasar</span> Active galactic nucleus containing a supermassive black hole

A quasar is an extremely luminous active galactic nucleus (AGN). It is sometimes known as a quasi-stellar object, abbreviated QSO. The emission from an AGN is powered by a supermassive black hole with a mass ranging from millions to tens of billions of solar masses, surrounded by a gaseous accretion disc. Gas in the disc falling towards the black hole heats up and releases energy in the form of electromagnetic radiation. The radiant energy of quasars is enormous; the most powerful quasars have luminosities thousands of times greater than that of a galaxy such as the Milky Way. Quasars are usually categorized as a subclass of the more general category of AGN. The redshifts of quasars are of cosmological origin.

<span class="mw-page-title-main">Hubble's law</span> Observation in physical cosmology

Hubble's law, also known as the Hubble–Lemaître law, is the observation in physical cosmology that galaxies are moving away from Earth at speeds proportional to their distance. In other words, the farther they are, the faster they are moving away from Earth. The velocity of the galaxies has been determined by their redshift, a shift of the light they emit toward the red end of the visible spectrum. The discovery of Hubble's law is attributed to Edwin Hubble's work published in 1929.

An active galactic nucleus (AGN) is a compact region at the center of a galaxy that emits a significant amount of energy across the electromagnetic spectrum, with characteristics indicating that the luminosity is not produced by stars. Such excess, non-stellar emissions have been observed in the radio, microwave, infrared, optical, ultra-violet, X-ray and gamma ray wavebands. A galaxy hosting an AGN is called an active galaxy. The non-stellar radiation from an AGN is theorized to result from the accretion of matter by a supermassive black hole at the center of its host galaxy.

<span class="mw-page-title-main">3C 273</span> Brightest quasar from Earth located in the constellation Virgo

3C 273 is a quasar located at the center of a giant elliptical galaxy in the constellation of Virgo. It was the first quasar ever to be identified and is the visually brightest quasar in the sky as seen from Earth, with an apparent visual magnitude of 12.9. The derived distance to this object is 749 megaparsecs. The mass of its central supermassive black hole is approximately 886 million times the mass of the Sun.

<span class="mw-page-title-main">Supermassive black hole</span> Largest type of black hole

A supermassive black hole is the largest type of black hole, with its mass being on the order of hundreds of thousands, or millions to billions, of times the mass of the Sun (M). Black holes are a class of astronomical objects that have undergone gravitational collapse, leaving behind spheroidal regions of space from which nothing can escape, not even light. Observational evidence indicates that almost every large galaxy has a supermassive black hole at its center. For example, the Milky Way galaxy has a supermassive black hole at its center, corresponding to the radio source Sagittarius A*. Accretion of interstellar gas onto supermassive black holes is the process responsible for powering active galactic nuclei (AGNs) and quasars.

<span class="mw-page-title-main">Reionization</span> Process that caused matter to reionize early in the history of the Universe

In the fields of Big Bang theory and cosmology, reionization is the process that caused electrically neutral atoms in the universe to reionize after the lapse of the "dark ages".

Redshift quantization, also referred to as redshift periodicity, redshift discretization, preferred redshifts and redshift-magnitude bands, is the hypothesis that the redshifts of cosmologically distant objects tend to cluster around multiples of some particular value.

<span class="mw-page-title-main">APM 08279+5255</span> Quasar

APM 08279+5255 is a very distant, broad absorption line quasar located in the constellation Lynx. It is magnified and split into multiple images by the gravitational lensing effect of a foreground galaxy through which its light passes. It appears to be a giant elliptical galaxy with a supermassive black hole and associated accretion disk. It possesses large regions of hot dust and molecular gas, as well as regions with starburst activity.

<span class="mw-page-title-main">Pea galaxy</span> Possible type of luminous blue compact galaxy

A Pea galaxy, also referred to as a Pea or Green Pea, might be a type of luminous blue compact galaxy that is undergoing very high rates of star formation. Pea galaxies are so-named because of their small size and greenish appearance in the images taken by the Sloan Digital Sky Survey (SDSS).

Lyman-break galaxies are star-forming galaxies at high redshift that are selected using the differing appearance of the galaxy in several imaging filters due to the position of the Lyman limit. The technique has primarily been used to select galaxies at redshifts of z = 3–4 using ultraviolet and optical filters, but progress in ultraviolet astronomy and in infrared astronomy has allowed the use of this technique at lower and higher redshifts using ultraviolet and near-infrared filters.

The Lynx Supercluster was discovered in 1999 as ClG J0848+4453, a name now used to describe the western cluster, with ClG J0849+4452 being the eastern one. It contains at least two clusters, designated RXJ 0848.9+4452 and RXJ 0848.6+4453. At the time of discovery, it was the most distant known supercluster with a comoving distance of 12.9 billion light years. Additionally, seven smaller groups of galaxies are associated with the supercluster. Through electromagnetic radiation and how it reacts with matter, we have been able to find three groupings of stars and two x-ray clusters within the Lynx.

<span class="mw-page-title-main">TON 618</span> Quasar and Lyman-alpha blob in the constellation Canes Venatici

TON 618 is a hyperluminous, broad-absorption-line, radio-loud quasar and Lyman-alpha blob located near the border of the constellations Canes Venatici and Coma Berenices, with the projected comoving distance of approximately 18.2 billion light-years from Earth. It possesses one of the most massive black holes ever found, at 40.7 billion M.

<span class="mw-page-title-main">GLASS-z12</span> Lyman-break galaxy that is one of the oldest galaxies known

GLASS-z12 is a Lyman-break galaxy discovered by the Grism Lens-Amplified Survey from Space (GLASS) observing program using the James Webb Space Telescope's NIRCam in July 2022. Spectroscopic observations of GLASS-z12 by the Atacama Large Millimeter Array (ALMA) in August 2022 confirmed that the galaxy has a spectroscopic redshift of 12.117±0.012, making it one of the earliest and most distant galaxies ever discovered, dating back to just 350 million years after the Big Bang, 13.6 billion years ago. ALMA observations detected an emission line associated with doubly ionized oxygen at 258.7 GHz with a significance of 5σ, suggesting that there is very low dust content in GLASS-z12, if not the early universe as well. Also based on oxygen-related measurements, the age of the galaxy is confirmed.

F200DB-045 is a candidate high-redshift galaxy, with an estimated redshift of approximately z = 20.4, corresponding to 168 million years after the Big Bang. If confirmed, it would be one of the earliest and most distant known galaxies observed.

References

  1. Planck Collaboration (2020). "Planck 2018 results. VI. Cosmological parameters". Astronomy & Astrophysics. 641. page A6 (see PDF page 15, Table 2: "Age/Gyr", last column). arXiv: 1807.06209 . Bibcode:2020A&A...641A...6P. doi:10.1051/0004-6361/201833910. S2CID   119335614.
  2. Guidry, Mike (2019). Modern general relativity: black holes, gravitational waves, and cosmology. Cambridge New York: Cambridge university press. ISBN   978-1-107-19789-3.
  3. Davis, Tamara M.; Lineweaver, Charles H. (2004). "Expanding Confusion: Common Misconceptions of Cosmological Horizons and the Superluminal Expansion of the Universe". Publications of the Astronomical Society of Australia. 21 (1): 97–109. arXiv: astro-ph/0310808 . Bibcode:2004PASA...21...97D. doi:10.1071/AS03040. ISSN   1323-3580. S2CID   13068122.
  4. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 Staff (2015). "UCLA Cosmological Calculator". UCLA . Retrieved 6 August 2022. Light travel distance was calculated from redshift value using the UCLA Cosmological Calculator, with parameters values as of 2015: H0=67.74 and OmegaM=0.3089 (see Table/Planck2015 at "Lambda-CDM model#Parameters" )
  5. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 Staff (2018). "UCLA Cosmological Calculator". UCLA . Retrieved 6 August 2022. Light travel distance was calculated from redshift value using the UCLA Cosmological Calculator, with parameters values as of 2018: H0=67.4 and OmegaM=0.315 (see Table/Planck2018 at "Lambda-CDM model#Parameters" )
  6. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 Staff (2022). "ICRAR Cosmology Calculator". International Centre for Radio Astronomy Research . Retrieved 6 August 2022. ICRAR Cosmology Calculator - Set H0=67.4 and OmegaM=0.315 (see Table/Planck2018 at "Lambda-CDM model#Parameters")
  7. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 Kempner, Joshua (2022). "KEMPNER Cosmology Calculator". Kempner.net. Retrieved 6 August 2022. KEMP Cosmology Calculator - Set H0=67.4, OmegaM=0.315, and OmegaΛ=0.6847 (see Table/Planck2018 at "Lambda-CDM model#Parameters")
  8. 1 2 3 4 5 6 Robertson, B. E.; et al. (2023). "Identification and properties of intense star-forming galaxies at redshifts z > 10". Nature Astronomy. 7 (5): 611–621. arXiv: 2212.04480 . Bibcode:2023NatAs...7..611R. doi:10.1038/s41550-023-01921-1. S2CID   257968812.
  9. 1 2 Ilie, Cosmin; Paulin, Jillian; Freese, Katherine (2023-07-25). "Supermassive Dark Star candidates seen by JWST". Proceedings of the National Academy of Sciences. 120 (30): e2305762120. arXiv: 2304.01173 . Bibcode:2023PNAS..12005762I. doi:10.1073/pnas.2305762120. ISSN   0027-8424. PMC   10372643 . PMID   37433001.
  10. 1 2 Wang, Bingjie; et al. (2023-11-13). "UNCOVER: Illuminating the Early Universe—JWST/NIRSpec Confirmation of z > 12 Galaxies". The Astrophysical Journal Letters. 957 (2): L34. arXiv: 2308.03745 . Bibcode:2023ApJ...957L..34W. doi: 10.3847/2041-8213/acfe07 . ISSN   2041-8205.
  11. Bakx, Tom J. L. C.; et al. (January 2023). "Deep ALMA redshift search of a z~12 GLASS-JWST galaxy candidate". Monthly Notices of the Royal Astronomical Society. 519 (4): 5076–5085. arXiv: 2208.13642 . doi:10.1093/mnras/stac3723.
  12. Haro, Pablo Arrabal; Dickinson, Mark; Finkelstein, Steven L.; Kartaltepe, Jeyhan S.; Donnan, Callum T.; Burgarella, Denis; Carnall, Adam; Cullen, Fergus; Dunlop, James S.; Fernández, Vital; Fujimoto, Seiji; Jung, Intae; Krips, Melanie; Larson, Rebecca L.; Papovich, Casey (2023-08-14). "Confirmation and refutation of very luminous galaxies in the early universe". Nature. 622 (7984): 707–711. arXiv: 2303.15431 . Bibcode:2023Natur.622..707A. doi:10.1038/s41586-023-06521-7. ISSN   0028-0836. PMID   37579792. S2CID   257766818.
  13. Harikane, Yuichi; Nakajima, Kimihiko; Ouchi, Masami; et al. (2023). "Pure Spectroscopic Constraints on UV Luminosity Functions and Cosmic Star Formation History From 25 Galaxies at $z_\mathrm{spec}=8.61-13.20$ Confirmed with JWST/NIRSpec". arXiv: 2304.06658v3 [astro-ph.GA].
  14. 1 2 Oesch, P. A.; Brammer, G.; van Dokkum, P.; et al. (March 2016). "A Remarkably Luminous Galaxy at z=11.1 Measured with Hubble Space Telescope Grism Spectroscopy". The Astrophysical Journal . 819 (2). 129. arXiv: 1603.00461 . Bibcode:2016ApJ...819..129O. doi: 10.3847/0004-637X/819/2/129 . S2CID   119262750.
  15. 1 2 Jiang, Linhua; et al. (January 2021). "Evidence for GN-z11 as a luminous galaxy at redshift 10.957". Nature Astronomy. 5 (3): 256–261. arXiv: 2012.06936 . Bibcode:2021NatAs...5..256J. doi:10.1038/s41550-020-01275-y. S2CID   229156468.
  16. Bunker, Andrew J.; et al. (2023). "JADES NIRSpec Spectroscopy of GN-z11: Lyman- α emission and possible enhanced nitrogen abundance in a z = 10.60 luminous galaxy". Astronomy & Astrophysics. 677: A88. arXiv: 2302.07256 . Bibcode:2023A&A...677A..88B. doi:10.1051/0004-6361/202346159. S2CID   256846361.
  17. Roberts-Borsani, Guido; Treu, Tommaso; Chen, Wenlei; Morishita, Takahiro; Vanzella, Eros; Zitrin, Adi; Bergamini, Pietro; Castellano, Marco; Fontana, Adriano; Grillo, Claudio; Kelly, Patrick L.; Merlin, Emiliano; Paris, Diego; Rosati, Piero; Acebron, Ana (2023). "A shot in the Dark (Ages): a faint galaxy at $z=9.76$ confirmed with JWST". Nature Astronomy. 618 (7965): 480–483. arXiv: 2210.15639 . Bibcode:2023Natur.618..480R. doi:10.1038/s41586-023-05994-w. PMID   37198479. S2CID   258741077.
  18. Boyett, Kristan; Trenti, Michele; Leethochawalit, Nicha; Calabró, Antonello; Metha, Benjamin; Roberts-Borsani, Guido; Dalmasso, Nicoló; Yang, Lilan; Santini, Paola; Treu, Tommaso; Jones, Tucker; Henry, Alaina; Mason, Charlotte A.; Morishita, Takahiro; Nanayakkara, Themiya (2024-03-07). "A massive interacting galaxy 510 million years after the Big Bang". Nature Astronomy: 1–16. arXiv: 2303.00306 . Bibcode:2024NatAs.tmp...53B. doi:10.1038/s41550-024-02218-7. ISSN   2397-3366.{{cite journal}}: CS1 maint: bibcode (link)
  19. T. Hashimoto; N. Laporte; K. Mawatari; R. S. Ellis; A. K. Inoue; E. Zackrisson; G. Roberts-Borsani; W. Zheng; Y. Tamura; F. E. Bauer; T. Fletcher; Y. Harikane; B. Hatsukade; N. H. Hayatsu; Y. Matsuda; H. Matsuo; T. Okamoto; M. Ouchi; R. Pello; C. Rydberg; I. Shimizu; Y. Taniguchi; H. Umehata; N. Yoshida (2019). "The Onset of Star Formation 250 Million Years After the Big Bang". Nature. 557 (7705): 312–313. arXiv: 1805.05966 . Bibcode:2018Natur.557..392H. doi:10.1038/s41586-018-0117-z. PMID   29765123. S2CID   21702406.
  20. Adi Zitrin; Ivo Labbe; Sirio Belli; Rychard Bouwens; Richard S. Ellis; Guido Roberts-Borsani; Daniel P. Stark; Pascal A. Oesch; Renske Smit (2015). "Lyman-alpha Emission from a Luminous z = 8.68 Galaxy: Implications for Galaxies as Tracers of Cosmic Reionization". The Astrophysical Journal. 810 (1): L12. arXiv: 1507.02679 . Bibcode:2015ApJ...810L..12Z. doi:10.1088/2041-8205/810/1/L12. S2CID   11524667.
  21. 1 2 3 Curti, Mirko; et al. (January 2023). "The chemical enrichment in the early Universe as probed by JWST via direct metallicity measurements at z 8". Monthly Notices of the Royal Astronomical Society. 518 (1): 425–438. arXiv: 2207.12375 . Bibcode:2023MNRAS.518..425C. doi:10.1093/mnras/stac2737.
  22. 1 2 3 Carnall, A. C.; et al. (January 2023). "A first look at the SMACS0723 JWST ERO: spectroscopic redshifts, stellar masses, and star-formation histories". Monthly Notices of the Royal Astronomical Society: Letters. 518 (1): L45–L50. arXiv: 2207.08778 . Bibcode:2023MNRAS.518L..45C. doi:10.1093/mnrasl/slac136.
  23. 1 2 3 Schaerer, D.; et al. (September 2022). "First look with JWST spectroscopy: Resemblance among z ~ 8 galaxies and local analogs". Astronomy & Astrophysics. 665: 6. arXiv: 2207.10034 . Bibcode:2022A&A...665L...4S. doi:10.1051/0004-6361/202244556. S2CID   252175886. L4.
  24. 1 2 3 Katz, Harley; et al. (January 2023). "AFirst insights into the ISM at z > 8 with JWST: possible physical implications of a high [O III] λ4363/[O III] λ5007". Monthly Notices of the Royal Astronomical Society. 518 (1): 592–603. arXiv: 2207.13693 . Bibcode:2023MNRAS.518..592K. doi:10.1093/mnras/stac2657.
  25. Laporte, N.; Ellis, R. S.; Boone, F.; Bauer, F. E.; Quénard, D.; Roberts-Borsani, G. W.; Pelló, R.; Pérez-Fournon, I.; Streblyanska, A. (2017). "Dust in the Reionization Era: ALMA Observations of a z = 8.38 Gravitationally Lensed Galaxy". The Astrophysical Journal. 832 (2): L21. arXiv: 1703.02039 . Bibcode:2017ApJ...837L..21L. doi: 10.3847/2041-8213/aa62aa . S2CID   51841290.
  26. Tamura, Y.; Mawatari, K.; Hashimoto, T.; Inoue, A. K.; Zackrisson, E.; Christensen, L.; Binggeli, C; Matsuda, Y.; Matsuo, H.; Takeuchi, T. T.; Asano, R. S.; Sunaga, K.; Shimizu, I.; Okamoto, T.; Yoshida, N.; Lee, M.; Shibuya, T.; Taniguchi, Y.; Umehata, H.; Hatsukade, B.; Kohno, K.; Ota, K. (2017). "Detection of the Far-infrared [O III] and Dust Emission in a Galaxy at Redshift 8.312: Early Metal Enrichment in the Heart of the Reionization Era". The Astrophysical Journal. 874 (1): 27. arXiv: 1806.04132 . Bibcode:2019ApJ...874...27T. doi: 10.3847/1538-4357/ab0374 . S2CID   55313459.
  27. 1 2 3 4 Tanvir, N. R.; Fox, D. B.; Levan, A. J.; Berger, E.; Wiersema, K.; Fynbo, J. P. U.; Cucchiara, A.; Krühler, T.; Gehrels, N.; Bloom, J. S.; Greiner, J.; Evans, P. A.; Rol, E.; Olivares, F.; Hjorth, J.; Jakobsson, P.; Farihi, J.; Willingale, R.; Starling, R. L. C.; Cenko, S. B.; Perley, D.; Maund, J. R.; Duke, J.; Wijers, R. A. M. J.; Adamson, A. J.; Allan, A.; Bremer, M. N.; Burrows, D. N.; Castro-Tirado, A. J.; et al. (2009). "A gamma-ray burst at a redshift of z~8.2". Nature. 461 (7268): 1254–7. arXiv: 0906.1577 . Bibcode:2009Natur.461.1254T. doi:10.1038/nature08459. PMID   19865165. S2CID   205218350.
  28. 1 2 Langeroodi, Danial; Hjorth, Jens; Chen, Wenlei; Kelly, Patrick L.; Williams, Hayley; Lin, Yu-Heng; Scarlata, Claudia; Zitrin, Adi; Broadhurst, Tom; Diego, Jose M.; Huang, Xiaosheng; Filippenko, Alexei V.; Foley, Ryan J.; Jha, Saurabh; Koekemoer, Anton M.; Oguri, Masamune; Perez-Fournon, Ismael; Pierel, Justin; Poidevin, Frederick; Strolger, Lou (2022). "Evolution of the Mass-Metallicity Relation from Redshift z≈8 to the Local Universe". The Astrophysical Journal. 804 (2). arXiv: 2212.02491 . Bibcode:2015ApJ...804L..30O. doi:10.1088/2041-8205/804/2/L30. S2CID   55115344.
  29. P. A. Oesch; P. G. van Dokkum; G. D. Illingworth; R. J. Bouwens; I. Momcheva; B. Holden; G. W. Roberts-Borsani; R. Smit; M. Franx; I. Labbe; V. Gonzalez; D. Magee (2015). "A Spectroscopic Redshift Measurement for a Luminous Lyman Break Galaxy at z = 7.730 using Keck/MOSFIRE". The Astrophysical Journal. 804 (2): L30. arXiv: 1502.05399 . Bibcode:2015ApJ...804L..30O. doi:10.1088/2041-8205/804/2/L30. S2CID   55115344.
  30. Song, M.; Finkelstein, S. L.; Livermore, R. C.; Capak, P. L.; Dickinson, M.; Fontana, A. (2016). "Keck/MOSFIRE Spectroscopy of z = 7–8 Galaxies: Lyman-alpha Emission from a Galaxy at z = 7.66". The Astrophysical Journal. 826 (2): 113. arXiv: 1602.02160 . Bibcode:2016ApJ...826..113S. doi: 10.3847/0004-637X/826/2/113 . S2CID   51806693.
  31. Wang, Feige; Yang, Jinyi; Fan, Xiaohui; Hennawi, Joseph F.; Barth, Aaron J.; Banados, Eduardo; Bian, Fuyan; Boutsia, Konstantina; Connor, Thomas; Davies, Frederick B.; Decarli, Roberto; Eilers, Anna-Christina; Farina, Emanuele Paolo; Green, Richard; Jiang, Linhua; Li, Jiang-Tao; Mazzucchelli, Chiara; Nanni, Riccardo; Schindler, Jan-Torge; Venemans, Bram; Walter, Fabian; Wu, Xue-Bing; Yue, Minghao (2021). "A Luminous Quasar at Redshift 7.642". The Astrophysical Journal. 907 (1): L1. arXiv: 2101.03179 . Bibcode:2021ApJ...907L...1W. doi: 10.3847/2041-8213/abd8c6 . S2CID   231572944.
  32. Bañados, Eduardo; et al. (6 December 2017). "An 800-million-solar-mass black hole in a significantly neutral Universe at a redshift of 7.5". Nature . 553 (7689): 473–476. arXiv: 1712.01860 . Bibcode:2018Natur.553..473B. doi:10.1038/nature25180. PMID   29211709. S2CID   205263326.
  33. S. L. Finkelstein; C. Papovich; M. Dickinson; M. Song; V. Tilvi; A. M. Koekemoer; K. D. Finkelstein; B. Mobasher; H. C. Ferguson; M. Giavalisco; N. Reddy; M. L. N. Ashby; A. Dekel; G. G. Fazio; A. Fontana; N. A. Grogin; J.-S. Huang; D. Kocevski; M. Rafelski; B. J. Weiner; S. P. Willner (2013). "A galaxy rapidly forming stars 700 million years after the Big Bang at redshift 7.51". Nature . 502 (7472): 524–527. arXiv: 1310.6031 . Bibcode:2013Natur.502..524F. doi:10.1038/nature12657. PMID   24153304. S2CID   4448085.
  34. Watson, Darach; Christensen, Lise; Knudsen, Kirsten Kraiberg; Richard, Johan; Gallazzi, Anna; Michałowski, Michał Jerzy (2015). "A dusty, normal galaxy in the epoch of reionization". Nature. 519 (7543): 327–330. arXiv: 1503.00002 . Bibcode:2015Natur.519..327W. doi:10.1038/nature14164. PMID   25731171. S2CID   2514879.
  35. Larson, R. L.; Finkelstein, S. L.; Pirzkal, N.; Ryan, R.; Tilvi, V.; Malhotra, S.; Rhoads, J.; Finkelstein, K.; Jung, I.; Christensen, L.; Cimatti, A.; Ferreras, I.; Grogin, N.; Koekemoer, A. M.; Hathi, N.; O'Connell, R.; Östlin, G.; Pasquali, A.; Pharo, J.; Rothberg, B.; Windhorst, R. A. (2018). "Discovery of a z = 7.452 High Equivalent Width Lyman alpha Emitter from the Hubble Space Telescope Faint Infrared Grism Survey". The Astrophysical Journal. 858 (2): 113. arXiv: 1712.05807 . Bibcode:2018ApJ...858...94L. doi: 10.3847/1538-4357/aab893 . S2CID   119257857.
  36. 1 2 3 Ono, Yoshiaki; Ouchi, Masami; Mobasher, Bahram; Dickinson, Mark; Penner, Kyle; Shimasaku, Kazuhiro; Weiner, Benjamin J.; Kartaltepe, Jeyhan S.; Nakajima, Kimihiko; Nayyeri, Hooshang; Stern, Daniel; Kashikawa, Nobunari; Spinrad, Hyron (2011). "Spectroscopic Confirmation of Three z-Dropout Galaxies at z = 6.844 – 7.213: Demographics of Lyman-Alpha Emission in z ~ 7 Galaxies". The Astrophysical Journal. 744 (2): 83. arXiv: 1107.3159 . Bibcode:2012ApJ...744...83O. doi:10.1088/0004-637X/744/2/83. S2CID   119306980.
  37. Inoue, Akio K.; et al. (June 2016). "Detection of an oxygen emission line from a high redshift galaxy in the reionization epoch" (PDF). Science. 352 (6293): 1559–1562. arXiv: 1606.04989 . Bibcode:2016Sci...352.1559I. doi:10.1126/science.aaf0714. PMID   27312046. S2CID   206646433.
  38. 1 2 Vanzella; et al. (2011). "Spectroscopic Confirmation of Two Lyman Break Galaxies at Redshift Beyond 7". The Astrophysical Journal Letters . 730 (2): L35. arXiv: 1011.5500 . Bibcode:2011ApJ...730L..35V. doi:10.1088/2041-8205/730/2/L35. S2CID   53459241.
  39. Daniel J. Mortlock; Stephen J. Warren; Bram P. Venemans; et al. (2011). "A luminous quasar at a redshift of z = 7.085". Nature. 474 (7353): 616–619. arXiv: 1106.6088 . Bibcode:2011Natur.474..616M. doi:10.1038/nature10159. PMID   21720366. S2CID   2144362.
  40. Schenker, Matthew A.; et al. (January 2012). "Keck Spectroscopy of Faint 3 < z < 8 Lyman Break Galaxies: Evidence for a Declining Fraction of Emission Line Sources in the Redshift Range 6 < z < 8". The Astrophysical Journal. 744 (2): 7. arXiv: 1107.1261 . Bibcode:2012ApJ...744..179S. doi:10.1088/0004-637X/744/2/179. S2CID   119244384.
  41. Fontana, A.; Vanzella, E.; Pentericci, L.; Castellano, M.; Giavalisco, M.; Grazian, A.; Boutsia, K.; Cristiani, S.; Dickinson, M.; Giallongo, E.; Maiolino, M.; Moorwood, A.; Santini, P. (2010). "The lack of intense Lyman~alpha in ultradeep spectra of z = 7 candidates in GOODS-S: Imprint of reionization?". The Astrophysical Journal. 725 (2): L205. arXiv: 1010.2754 . Bibcode:2010ApJ...725L.205F. doi:10.1088/2041-8205/725/2/L205. S2CID   119270473.
  42. Rhoads, James E.; Hibon, Pascale; Malhotra, Sangeeta; Cooper, Michael; Weiner, Benjamin (2012). "A Lyman Alpha Galaxy at Redshift z = 6.944 in the COSMOS Field". The Astrophysical Journal. 752 (2): L28. arXiv: 1205.3161 . Bibcode:2012ApJ...752L..28R. doi:10.1088/2041-8205/752/2/L28. S2CID   118383532.
  43. Bañados, Eduardo; Mazzucchelli, Chiara; Momjian, Emmanuel; Eilers, Anna-Christina; Wang, Feige; Schindler, Jan-Torge; Connor, Thomas; Andika, Irham Taufik; Barth, Aaron J.; Carilli, Chris; Davies, Frederick B.; Decarli, Roberto; Fan, Xiaohui; Farina, Emanuele Paolo; Hennawi, Joseph F.; Pensabene, Antonio; Stern, Daniel; Venemans, Bram P.; Wenzl, Lukas; Yang, Jinyi (2021). "The Discovery of a Highly Accreting, Radio-loud Quasar at z = 6.82". The Astrophysical Journal. 909 (1). Harvard University: 80. arXiv: 2103.03295 . Bibcode:2021ApJ...909...80B. doi: 10.3847/1538-4357/abe239 . S2CID   232135300.
  44. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 Adams, N. J.; et al. (November 2022). "Discovery and properties of ultra-high redshift galaxies (9 < z < 12) in the JWST ERO SMACS 0723 Field". Monthly Notices of the Royal Astronomical Society. 518 (3): 4755–4766. arXiv: 2207.11217 . Bibcode:2023MNRAS.518.4755A. doi:10.1093/mnras/stac3347.
  45. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 Yan, Haojing; et al. (January 2023). "First Batch of z ≈ 11–20 Candidate Objects Revealed by the James Webb Space Telescope Early Release Observations on SMACS 0723-73". The Astrophysical Journal Letters. 942 (L9): 20. arXiv: 2207.11558 . Bibcode:2023ApJ...942L...9Y. doi: 10.3847/2041-8213/aca80c .
  46. Garth Illingworth; Rychard Bouwens; Pascal Oesch; Ivo Labbe; Dan Magee (December 2012). "Our Latest Results". FirstGalaxies. Retrieved March 10, 2016.
  47. 1 2 3 4 5 6 7 8 Harikane, Yuichi; et al. (2023). "A Comprehensive Study of Galaxies at z ~ 9–16 Found in the Early JWST Data: Ultraviolet Luminosity Functions and Cosmic Star Formation History at the Pre-reionization Epoch". The Astrophysical Journal Supplement Series. 265 (1): 5. arXiv: 2208.01612 . Bibcode:2023ApJS..265....5H. doi: 10.3847/1538-4365/acaaa9 . S2CID   251253150.
  48. 1 2 Fujimoto, Seiji; et al. (2023). "ALMA FIR View of Ultra High-redshift Galaxy Candidates at z ~ 11-17: Blue Monsters or Low- z Red Interlopers?". The Astrophysical Journal. 955 (2): 130. arXiv: 2211.03896 . Bibcode:2023ApJ...955..130F. doi: 10.3847/1538-4357/aceb67 .
  49. 1 2 Morishita, Takahiro; Stiavelli, Massimo (2023). "Physical Characterization of Early Galaxies in the Webb's First Deep Field SMACS J0723.3-7323". The Astrophysical Journal Letters. 946 (2): L35. arXiv: 2207.11671v2 . Bibcode:2023ApJ...946L..35M. doi: 10.3847/2041-8213/acbf50 . S2CID   254220684.
  50. Harikane, Yuichi; Ouchi, Masami; Oguri, Masamune; Ono, Yoshiaki; Nakajima, Kimihiko; Isobe, Yuki; Umeda, Hiroya; Mawatari, Ken; Zhang, Yechi (2023). "A Comprehensive Study of Galaxies at z ~ 9–16 Found in the Early JWST Data: Ultraviolet Luminosity Functions and Cosmic Star Formation History at the Pre-reionization Epoch". The Astrophysical Journal Supplement Series. 265 (1): 5. arXiv: 2208.01612v3 . Bibcode:2023ApJS..265....5H. doi: 10.3847/1538-4365/acaaa9 . S2CID   251253150.
  51. 1 2 3 4 5 6 7 8 9 10 11 Hakim, Atek; et al. (November 2022). "Revealing galaxy candidates out to z 16 with JWST observations of the lensing cluster SMACS0723". Monthly Notices of the Royal Astronomical Society. 519 (1): 1201–1220. arXiv: 2207.12338 . Bibcode:2023MNRAS.519.1201A. doi:10.1093/mnras/stac3144.
  52. Harikane, Y.; et al. (April 2022). "A Search for H-Dropout Lyman Break Galaxies at z ~ 12–16". The Astrophysical Journal. 929 (1): 1. arXiv: 2112.09141 . Bibcode:2022ApJ...929....1H. doi: 10.3847/1538-4357/ac53a9 . S2CID   246823511.
  53. 1 2 3 4 5 6 7 8 9 10 11 12 Donnan, C. T.; et al. (November 2022). "The evolution of the galaxy UV luminosity function at redshifts z ≃ 8 - 15 from deep JWST and ground-based near-infrared imaging". Monthly Notices of the Royal Astronomical Society. 518 (4): 6011–6040. arXiv: 2207.12356 . Bibcode:2023MNRAS.518.6011D. doi:10.1093/mnras/stac3472.
  54. 1 2 3 Bouwens, Rychard J.; et al. (2023). "Evolution of the UV LF from z ~ 15 to z ~ 8 using new JWST NIRCam medium-band observations over the HUDF/XDF". Monthly Notices of the Royal Astronomical Society. 523: 1036–1055. arXiv: 2211.02607 . doi:10.1093/mnras/stad1145.
  55. Rodighiero, Giulia; et al. (January 2023). "JWST unveils heavily obscured (active and passive) sources up to z 13". Monthly Notices of the Royal Astronomical Society: Letters. 518 (1): L19–L24. arXiv: 2208.02825 . Bibcode:2023MNRAS.518L..19R. doi:10.1093/mnrasl/slac115.
  56. 1 2 Whitler, Lily; et al. (December 2022). "On the ages of bright galaxies 500 Myr after the Big Bang: insights into star formation activity at z ≳ 15 with JWST". Monthly Notices of the Royal Astronomical Society. 519 (1): 157–171. arXiv: 2208.01599 . Bibcode:2023MNRAS.519..157W. doi:10.1093/mnras/stac3535.
  57. Coe, Dan; Zitrin, Adi; Carrasco, Mauricio; Shu, Xinwen; Zheng, Wei; Postman, Marc; Bradley, Larry; Koekemoer, Anton; Bouwens, Rychard; Broadhurst, Tom; Monna, Anna; Host, Ole; Moustakas, Leonidas A.; Ford, Holland; Moustakas, John; Van Der Wel, Arjen; Donahue, Megan; Rodney, Steven A.; Benítez, Narciso; Jouvel, Stephanie; Seitz, Stella; Kelson, Daniel D.; Rosati, Piero (2013). "CLASH: Three Strongly Lensed Images of a Candidate z ~ 11 Galaxy". The Astrophysical Journal. 762 (1): 32. arXiv: 1211.3663 . Bibcode:2013ApJ...762...32C. doi:10.1088/0004-637x/762/1/32. S2CID   119114237.
  58. Hsiao, Tiger Yu-Yang; et al. (2023). "JWST Reveals a Possible z ~ 11 Galaxy Merger in Triply Lensed MACS0647–JD". The Astrophysical Journal Letters. 949 (2): L34. arXiv: 2210.14123 . Bibcode:2023ApJ...949L..34H. doi: 10.3847/2041-8213/acc94b . S2CID   253107903.
  59. Naidu, Rohan P.; et al. (November 2022). "Two Remarkably Luminous Galaxy Candidates at z ≈ 10 − 12 Revealed by JWST". The Astrophysical Journal Letters. 940 (1): 11. arXiv: 2207.09434 . Bibcode:2022ApJ...940L..14N. doi: 10.3847/2041-8213/ac9b22 . S2CID   250644267. L14.
  60. Yoon, Ilsang; et al. (2023). "ALMA Observation of a z ≳ 10 Galaxy Candidate Discovered with JWST". The Astrophysical Journal. 950 (1): 61. arXiv: 2210.08413 . Bibcode:2023ApJ...950...61Y. doi: 10.3847/1538-4357/acc94d .
  61. Salmon, Brett; Coe, Dan; Bradley, Larry; Bradač, Marusa; Huang, Kuang-Han; Strait, Victoria; Oesch, Pascal; Paterno-Mahler, Rachel; Zitrin, Adi; Acebron, Ana; Cibirka, Nathália; Kikuchihara, Shotaro; Oguri, Masamune; Brammer, Gabriel B; Sharon, Keren; Trenti, Michele; Avila, Roberto J; Ogaz, Sara; Andrade-Santos, Felipe; Carrasco, Daniela; Cerny, Catherine; Dawson, William; Frye, Brenda L; Hoag, Austin; Jones, Christine; Mainali, Ramesh; Ouchi, Masami; Rodney, Steven A; Stark, Daniel; Umetsu, Keiichi (2018). "A Candidate z~10 Galaxy Strongly Lensed into a Spatially Resolved Arc". The Astrophysical Journal. 864: L22. arXiv: 1801.03103 . doi: 10.3847/2041-8213/aadc10 . S2CID   78087820.
  62. "Hubble Finds Distant Galaxy Through Cosmic Magnifying Glass". NASA. 23 April 2015.
  63. Zitrin, Adi; Zheng, Wei; Broadhurst, Tom; Moustakas, John; Lam, Daniel; Shu, Xinwen; Huang, Xingxing; Diego, Jose M.; Ford, Holland; Lim, Jeremy; Bauer, Franz E.; Infante, Leopoldo; Kelson, Daniel D.; Molino, Alberto (2014). "A Geometrically Supported z ~ 10 Candidate Multiply Imaged by the Hubble Frontier Fields Cluster A2744" (PDF). The Astrophysical Journal. 793 (1): L12. arXiv: 1407.3769 . Bibcode:2014ApJ...793L..12Z. doi:10.1088/2041-8205/793/1/L12. S2CID   43853349.
  64. "NASA Telescopes Spy Ultra-Distant Galaxy". NASA.
  65. Zheng, W.; Postman, M.; Zitrin, A.; Moustakas, J.; Shu, X.; Jouvel, S.; Høst, O.; Molino, A.; Bradley, L.; Coe, D.; Moustakas, L. A.; Carrasco, M.; Ford, H.; Benítez, N.; Lauer, T. R.; Seitz, S.; Bouwens, R.; Koekemoer, A.; Medezinski, E.; Bartelmann, M.; Broadhurst, T.; Donahue, M.; Grillo, C.; Infante, L.; Jha, S. W.; Kelson, D. D.; Lahav, O.; Lemze, D.; Melchior, P.; Meneghetti, M. (2012). "A magnified young galaxy from about 500 million years after the Big Bang". Nature. 489 (7416): 406–408. arXiv: 1204.2305 . Bibcode:2012Natur.489..406Z. doi:10.1038/nature11446. PMID   22996554. S2CID   4415218.
  66. Penn State Science, "Cosmic Explosion is New Candidate for Most Distant Object in the Universe", Derek. B. Fox, Barbara K. Kennedy, 25 May 2011
  67. Space Daily, Explosion Helps Researcher Spot Universe's Most Distant Object, 27 May 2011
  68. "ESA Science & Technology: The Hubble eXtreme Deep Field (annotated)".
  69. David Shiga. "Dim galaxy is most distant object yet found". New Scientist.
  70. Bunker, Andrew J.; Caruana, Joseph; Wilkins, Stephen M.; Stanway, Elizabeth R.; Lorenzoni, Silvio; Lacy, Mark; Jarvis, Matt J.; Hickey, Samantha (2013). "VLT/XSHOOTER and Subaru/MOIRCS spectroscopy of HUDF.YD3: no evidence for Lyman &". Monthly Notices of the Royal Astronomical Society. 430 (4): 3314. arXiv: 1301.4477 . Bibcode:2013MNRAS.430.3314B. doi:10.1093/mnras/stt132.
  71. Trenti, M.; Bradley, L. D.; Stiavelli, M.; Shull, J. M.; Oesch, P.; Bouwens, R. J.; Munoz, J. A.; Romano-Diaz, E.; Treu, T.; Shlosman, I.; Carollo, C. M. (2011). "Overdensities of Y-dropout Galaxies from the Brightest-of-Reionizing Galaxies Survey: A Candidate Protocluster at Redshift z ≈ 8". The Astrophysical Journal. 746 (1): 55. arXiv: 1110.0468 . Bibcode:2012ApJ...746...55T. doi:10.1088/0004-637X/746/1/55. S2CID   119294290.
  72. Wang, Tao; Elbaz, David; Daddi, Emanuele; Finoguenov, Alexis; Liu, Daizhong; Schrieber, Corenin; Martin, Sergio; Strazzullo, Veronica; Valentino, Francesco; van Der Burg, Remco; Zanella, Anita; Cisela, Laure; Gobat, Raphael; Le Brun, Amandine; Pannella, Maurilio; Sargent, Mark; Shu, Xinwen; Tan, Qinghua; Cappelluti, Nico; Li, Xanxia (2016). "Discovery of a galaxy cluster with a violently starbursting core at z=2.506". The Astrophysical Journal. 828 (1): 56. arXiv: 1604.07404 . Bibcode:2016ApJ...828...56W. doi: 10.3847/0004-637X/828/1/56 . S2CID   8771287.
  73. Cucciati, O.; Lemaux, B. C.; Zamorani, G.; Le Fevre, O.; Tasca, L. A. M.; Hathi, N. P.; Lee, K-G.; Bardelli, S.; Cassata, P.; Garilli, B.; Le Brun, V.; Maccagni, D.; Pentericci, L.; Thomas, R.; Vanzella, E.; Zucca, E.; Lubin, L. M.; Amorin, R.; Cassara', L. P.; Cimatti, A.; Talia, M.; Vergani, D.; Koekemoer, A.; Pforr, J.; Salvato, M. (2018). "The progeny of a Cosmic Titan: a massive multi-component proto-supercluster in formation at z=2.45 in VUDS". Astronomy & Astrophysics . 619: A49. arXiv: 1806.06073 . Bibcode:2018A&A...619A..49C. doi:10.1051/0004-6361/201833655. S2CID   119472428.
  74. Morishita, Takahiro; Roberts-Borsani, Guido; Treu, Tommaso; Brammer, Gabriel; Mason, Charlotte A.; Trenti, Michele; Vulcani, Benedetta; Wang, Xin; Acebron, Ana; Bahé, Yannick; Bergamini, Pietro; Boyett, Kristan; Bradac, Marusa; Calabrò, Antonello; Castellano, Marco; Chen, Wenlei; De Lucia, Gabriella; Filippenko, Alexei V.; Fontana, Adriano; Glazebrook, Karl; Grillo, Claudio; Henry, Alaina; Jones, Tucker; Kelly, Patrick L.; Koekemoer, Anton M.; Leethochawalit, Nicha; Lu, Ting-Yi; Marchesini, Danilo; Mascia, Sara; Mercurio, Amata; Merlin, Emiliano; Metha, Benjamin; Nanayakkara, Themiya; Nonino, Mario; Paris, Diego; Pentericci, Laura; Santini, Paola; Strait, Victoria; Vanzella, Eros; Windhorst, Rogier A.; Rosati, Piero; Xie, Lizhi (30 January 2023). "Early results from GLASS-JWST. XVIII: A spectroscopically confirmed protocluster 650 million years after the Big Bang". Astrophysical Journal Letters. 947 (2). arXiv: 2211.09097 . Bibcode:2023ApJ...947L..24M. doi: 10.3847/2041-8213/acb99e . S2CID   253553396.
  75. 1 2 Akos Bogdan; et al. (November 6, 2023), "Evidence for heavy-seed origin of early supermassive black holes from a z≈10 x-ray quasar", Nature Astronomy , 8: 126–133, arXiv: 2305.15458 , doi:10.1038/s41550-023-02111-9, S2CID   258887541
  76. 1 2 NASA, "New Gamma-Ray Burst Smashes Cosmic Distance Record" Archived 2011-03-10 at the Wayback Machine , 28 April 2009
  77. 1 2 Science Codex, "GRB 090429B – most distant gamma-ray burst yet" Archived 2011-05-31 at the Wayback Machine , NASA/Goddard, 27 May 2011
  78. Welch, Brian; et al. (30 March 2022). "A highly magnified star at redshift 6.2". Nature . 603 (7903): 815–818. arXiv: 2209.14866 . Bibcode:2022Natur.603..815W. doi:10.1038/s41586-022-04449-y. PMID   35354998. S2CID   247842625 . Retrieved 30 March 2022.
  79. Gianopoulos, Andrea (30 March 2022). "Record Broken: Hubble Spots Farthest Star Ever Seen". NASA . Retrieved 30 March 2022.
  80. Camille M. Carlisle (12 April 2013). "The Most Distant Star Ever Seen?". Sky and Telescope.
  81. Kelly, Patrick L.; et al. (2018). "Extreme magnification of an individual star at redshift 1.5 by a galaxy-cluster lens". Nature Astronomy. 2 (4): 334–342. arXiv: 1706.10279 . Bibcode:2018NatAs...2..334K. doi:10.1038/s41550-018-0430-3. S2CID   119412560.
  82. Mowla, Lamiya; et al. (October 2022). "The Sparkler: Evolved High-redshift Globular Cluster Candidates Captured by JWST". The Astrophysical Journal Letters. 937 (2): 9. arXiv: 2208.02233 . Bibcode:2022ApJ...937L..35M. doi: 10.3847/2041-8213/ac90ca . L35.
  83. Connor, Thomas; Bañados, Eduardo; Stern, Daniel; Carilli, Chris; Fabian, Andrew; Momjian, Emmanuel; Rojas-Ruiz, Sofía; Decarli, Roberto; Farina, Emanuele Paolo; Mazzucchelli, Chiara; Earnshaw, Hannah P. (2021). "Enhanced X-Ray Emission from the Most Radio-powerful Quasar in the Universe's First Billion Years". The Astrophysical Journal. 911 (2): 120. arXiv: 2103.03879 . Bibcode:2021ApJ...911..120C. doi: 10.3847/1538-4357/abe710 . S2CID   232148026.
  84. NASA.gov
  85. SpaceDaily, "Record-Setting X-ray Jet Discovered", 30 November 2012 (accessed 4 December 2012)
  86. ESA, "Artist's impression of the X-ray binary XMMU J004243.6+412519", 12 December 2012 (accessed 18 December 2012)
  87. e! Science News, "XMMU J004243.6+412519: Black-Hole Binary At The Eddington Limit", 12 December 2012 (accessed 18 December 2012)
  88. SpaceDaily, "Microquasar found in neighbor galaxy, tantalizing scientists", 17 December 2012 (accessed 18 December 2012)
  89. Ouchi, Masami; Ono, Yoshiaki; Egami, Eiichi; Saito, Tomoki; Oguri, Masamune; McCarthy, Patrick J.; Farrah, Duncan; Kashikawa, Nobunari; Momcheva, Ivelina; Shimasaku, Kazuhiro; Nakanishi, Kouichiro; Furusawa, Hisanori; Akiyama, Masayuki; Dunlop, James S.; Mortier, Angela M. J. (2009-05-01). "Discovery of a Giant Lyα Emitter Near the Reionization Epoch". The Astrophysical Journal. 696 (2): 1164–1175. arXiv: 0807.4174 . Bibcode:2009ApJ...696.1164O. doi:10.1088/0004-637X/696/2/1164. ISSN   0004-637X. S2CID   15246638.
  90. Hsu, Jeremy (2009-04-22). "Giant Mystery Blob Discovered Near Dawn of Time". SPACE.com . Retrieved 2009-04-24.
  91. USA Today, "Smallest, most distant planet outside solar system found", Malcolm Ritter, 25 January 2006 (accessed 5 August 2010)
  92. Schneider, J. "Notes for star PA-99-N2". Extrasolar Planets Encyclopaedia . Archived from the original on February 6, 2010. Retrieved 2010-08-06.
  93. Exoplaneten.de, "The Microlensing Event of Q0957+561" Archived 2012-02-11 at the Wayback Machine (accessed 5 August 2010)
  94. Schild, R.E. (1996). "Microlensing Variability of the Gravitationally Lensed Quasar Q0957+561 A, B". Astrophysical Journal. 464: 125. Bibcode:1996ApJ...464..125S. doi:10.1086/177304.
  95. Cooke, Jeff; Sullivan, Mark; Gal-Yam, Avishay; Barton, Elizabeth J.; Carlberg, Raymond G.; Ryan-Weber, Emma V.; Horst, Chuck; Omori, Yuuki; Díaz, C. Gonzalo (2012). "Superluminous supernovae at redshifts of 2.05 and 3.90". Nature. 491 (7423): 228–31. arXiv: 1211.2003 . Bibcode:2012Natur.491..228C. doi:10.1038/nature11521. PMID   23123848. S2CID   4397580.
  96. "Record-breaking supernova in the CANDELS Ultra Deep Survey: before, after, and difference". www.spacetelescope.org.
  97. Science Newsline, "The Farthest Supernova Yet for Measuring Cosmic History" Archived 2013-05-21 at the Wayback Machine , Lawrence Berkeley National Laboratory, 9 January 2013 (accessed 10 January 2013)
  98. Space.com, "Most Distant 'Standard Candle' Star Explosion Found", Mike Wall, 9 January 2013 (accessed 10 January 2013)
  99. Hinshaw, G.; Weiland, J. L.; Hill, R. S.; Odegard, N.; Larson, D.; Bennett, C. L.; Dunkley, J.; Gold, B.; Greason, M. R.; Jarosik, N.; Komatsu, E.; Nolta, M. R.; Page, L.; Spergel, D. N.; Wollack, E.; Halpern, M.; Kogut, A.; Limon, M.; Meyer, S. S.; Tucker, G. S.; Wright, E. L. (2009). "Five-Year Wilkinson Microwave Anisotropy Probe Observations: Data Processing, Sky Maps, and Basic Results". Astrophysical Journal Supplement. 180 (2): 225–245. arXiv: 0803.0732 . Bibcode:2009ApJS..180..225H. doi:10.1088/0067-0049/180/2/225. S2CID   3629998.
  100. Redshift states the Cosmic microwave background radiation as having a redshift of z = 1089
  101. Jonathan Amos (3 March 2016). "Hubble sets new cosmic distance record". BBC News.
  102. Mike Wall (5 August 2015). "Ancient Galaxy Is Most Distant Ever Found". Space.com.
  103. W. M. Keck Observatory (6 August 2015). "A new record: Keck Observatory measures most distant galaxy". Astronomy Now.
  104. Mario De Leo Winkler (15 July 2015). "The Farthest Object in the Universe". Huffington Post.
  105. 1 2 New Scientist , "Most distant object in the universe spotted", Rachel Courtland, 22:32 27 April 2009 . Retrieved 2009-11-11.
  106. New Scientist, "First generation of galaxies glimpsed forming", 'David Shiga ', 19:01 13 September 2006 (accessed 2009/11/11)
  107. Iye, M; Ota, K; Kashikawa, N; Furusawa, H; Hashimoto, T; Hattori, T; Matsuda, Y; Morokuma, T; Ouchi, M; Shimasaku, K (2006). "A galaxy at a redshift z = 6.96". Nature. 443 (7108): 186–8. arXiv: astro-ph/0609393 . Bibcode:2006Natur.443..186I. doi:10.1038/nature05104. PMID   16971942. S2CID   2876103.
  108. 1 2 Taniguchi, Yoshi (23 June 2008). "Star Forming Galaxies at z > 5". Proceedings of the International Astronomical Union. 3 (S250): 429–436. arXiv: 0804.0644 . Bibcode:2008IAUS..250..429T. doi:10.1017/S1743921308020796. S2CID   198472.
  109. 1 2 Taniguchi, Yoshiaki; Ajiki, Masaru; Nagao, Tohru; Shioya, Yasuhiro; Murayama, Takashi; Kashikawa, Nobunari; Kodaira, Keiichi; Kaifu, Norio; Ando, Hiroyasu; Karoji, Hiroshi; Akiyama, Masayuki; Aoki, Kentaro; Doi, Mamoru; Fujita, Shinobu S.; Furusawa, Hisanori; Hayashino, Tomoki; Iwamuro, Fumihide; Iye, Masanori; Kobayashi, Naoto; Kodama, Tadayuki; Komiyama, Yutaka; Matsuda, Yuichi; Miyazaki, Satoshi; Mizumoto, Yoshihiko; Morokuma, Tomoki; Motohara, Kentaro; Nariai, Kyoji; Ohta, Koji; Ohyama, Youichi; et al. (2005). "The SUBARU Deep Field Project: Lymanα Emitters at a Redshift of 6.6" (PDF). Publications of the Astronomical Society of Japan. 57: 165–182. arXiv: astro-ph/0407542 . Bibcode:2005PASJ...57..165T. doi:10.1093/pasj/57.1.165.
  110. 1 2 BBC News, Most distant galaxy detected, Tuesday, 25 March 2003, 14:28 GMT
  111. 1 2 SpaceRef, Subaru Telescope Detects the Most Distant Galaxy Yet and Expects Many More Archived 2012-12-09 at archive.today , Monday, March 24, 2003
  112. Kodaira, K.; Taniguchi, Y.; Kashikawa, N.; Kaifu, N.; Ando, H.; Karoji, H.; Ajiki, Masaru; Akiyama, Masayuki; Aoki, Kentaro; Doi, Mamoru; Fujita, Shinobu S.; Furusawa, Hisanori; Hayashino, Tomoki; Imanishi, Masatoshi; Iwamuro, Fumihide; Iye, Masanori; Kawabata, Koji S.; Kobayashi, Naoto; Kodama, Tadayuki; Komiyama, Yutaka; Kosugi, George; Matsuda, Yuichi; Miyazaki, Satoshi; Mizumoto, Yoshihiko; Motohara, Kentaro; Murayama, Takashi; Nagao, Tohru; Nariai, Kyoji; Ohta, Kouji; et al. (2003). "The Discovery of Two Lyman$α$ Emitters Beyond Redshift 6 in the Subaru Deep Field". Publications of the Astronomical Society of Japan. 55 (2): L17. arXiv: astro-ph/0301096 . Bibcode:2003PASJ...55L..17K. doi:10.1093/pasj/55.2.L17.
  113. New Scientist, New record for Universe's most distant object, 17:19 14 March 2002
  114. BBC News, Far away stars light early cosmos, Thursday, 14 March 2002, 11:38 GMT
  115. Hu, E. M. (2002). "A Redshift z = 6.56 Galaxy behind the Cluster Abell 370". The Astrophysical Journal. 568 (2): L75–L79. arXiv: astro-ph/0203091 . Bibcode:2002ApJ...568L..75H. doi: 10.1086/340424 .
  116. "K2.1 HCM 6A — Discovery of a redshift z = 6.56 galaxy lying behind the cluster Abell 370". Hera.ph1.uni-koeln.de. 2008-04-14. Archived from the original on 2011-05-18. Retrieved 2010-10-22.
  117. Pentericci, L.; Fan, X.; Rix, H. W.; Strauss, M. A.; Narayanan, V. K.; Richards, G T.; Schneider, D. P.; Krolik, J.; Heckman, T.; Brinkmann, J.; Lamb, D. Q.; Szokoly, G. P. (2002). "VLT observations of the z = 6.28 quasar SDSS 1030+0524". The Astronomical Journal. 123 (5): 2151. arXiv: astro-ph/0112075 . Bibcode:2002AJ....123.2151P. doi:10.1086/340077. S2CID   119041760.
  118. The Astrophysical Journal , 578:702–707, 20 October 2002, A Constraint on the Gravitational Lensing Magnification and Age of the Redshift z = 6.28 Quasar SDSS 1030+0524
  119. White, Richard L.; Becker, Robert H.; Fan, Xiaohui; Strauss, Michael A. (2003). "Probing the Ionization State of the Universe atz>6". The Astronomical Journal. 126 (1): 1–14. arXiv: astro-ph/0303476 . Bibcode:2003AJ....126....1W. doi:10.1086/375547. S2CID   51505828.
  120. Farrah, D.; Priddey, R.; Wilman, R.; Haehnelt, M.; McMahon, R. (2004). "The X-Ray Spectrum of the z = 6.30 QSO SDSS J1030+0524". The Astrophysical Journal. 611 (1): L13–L16. arXiv: astro-ph/0406561 . Bibcode:2004ApJ...611L..13F. doi:10.1086/423669. S2CID   14854831.
  121. 1 2 PennState Eberly College of Science, Discovery Announced of Two Most Distant Objects Archived 2007-11-21 at the Wayback Machine , June 2001
  122. 1 2 SDSS, Early results from the Sloan Digital Sky Survey: From under our nose to the edge of the universe, June 2001
  123. 1 2 3 4 PennState – Eberly College of Science – Science Journal – Summer 2000 – Vol. 17, No. 1 International Team of Astronomers Finds Most Distant Object Archived 2009-09-12 at the Wayback Machine
  124. The Astrophysical Journal Letters, 522:L9–L12, 1999 September 1, An Extremely Luminous Galaxy at z = 5.74
  125. PennState Eberly College of Science, X-rays from the Most Distant Quasar Captured with the XMM-Newton Satellite Archived 2007-11-21 at the Wayback Machine , Dec 2000
  126. UW-Madison Astronomy, Confirmed High Redshift (z > 5.5) Galaxies – (Last Updated 10th February 2005) Archived 2007-06-18 at the Wayback Machine
  127. SPACE.com, Most Distant Object in Universe Comes Closer, 01 December 2000
  128. The Astrophysical Journal Letters, 522:L9–L12, September 1, 1999, An Extremely Luminous Galaxy at z = 5.74
  129. 1 2 3 4 5 6 Publications of the Astronomical Society of the Pacific , 111: 1475–1502, 1999 December; Search Techniques for Distant Galaxies; Introduction
  130. New York Times, Peering Back in Time, Astronomers Glimpse Galaxies Aborning, October 20, 1998
  131. 1 2 Astronomy Picture of the Day, A Baby Galaxy, March 24, 1998
  132. 1 2 Dey, Arjun; Spinrad, Hyron; Stern, Daniel; Graham, James R.; Chaffee, Frederic H. (1998). "A Galaxy at z = 5.34". The Astrophysical Journal. 498 (2): L93. arXiv: astro-ph/9803137 . Bibcode:1998ApJ...498L..93D. doi:10.1086/311331.
  133. "A New Most Distant Object: z = 5.34". Astro.ucla.edu. Retrieved 2010-10-22.
  134. Astronomy Picture of the Day, Behind CL1358+62: A New Farthest Object, July 31, 1997
  135. Franx, Marijn; Illingworth, Garth D.; Kelson, Daniel D.; Van Dokkum, Pieter G.; Tran, Kim-Vy (1997). "A Pair of Lensed Galaxies at z = 4.92 in the Field of CL 1358+62". The Astrophysical Journal. 486 (2): L75. arXiv: astro-ph/9704090 . Bibcode:1997ApJ...486L..75F. doi:10.1086/310844. S2CID   14502310.
  136. 1 2 3 4 5 6 Illingworth, Garth (1999). "Galaxies at High Redshift". Astrophysics and Space Science. 269/270: 165–181. arXiv: astro-ph/0009187 . Bibcode:1999Ap&SS.269..165I. doi:10.1023/a:1017052809781. S2CID   119363931.
  137. Smith, J. D.; Djorgovski, S.; Thompson, D.; Brisken, W. F.; Neugebauer, G.; Matthews, K.; Meylan, G.; Piotto, G.; Suntzeff, N. B. (1994). "Multicolor detection of high-redshift quasars, 2: Five objects with Z greater than or approximately equal to 4" (PDF). The Astronomical Journal. 108: 1147. Bibcode:1994AJ....108.1147S. doi:10.1086/117143.
  138. New Scientist, issue 1842, 10 October 1992, page 17, Science: Infant galaxy's light show
  139. FermiLab Scientists of Sloan Digital Sky Survey Discover Most Distant Quasar Archived 2009-09-12 at the Wayback Machine December 8, 1998
  140. 1 2 Hook, Isobel M.; McMahon, Richard G. (1998). "Discovery of radio-loud quasars with z = 4.72 and z = 4.01". Monthly Notices of the Royal Astronomical Society. 294 (1): L7–L12. arXiv: astro-ph/9801026 . Bibcode:1998MNRAS.294L...7H. doi:10.1046/j.1365-8711.1998.01368.x.
  141. 1 2 3 4 5 Turner, Edwin L. (1991). "Quasars and galaxy formation. I – the Z greater than 4 objects". Astronomical Journal. 101: 5. Bibcode:1991AJ....101....5T. doi:10.1086/115663.
  142. SIMBAD, Object query : PC 1158+4635, QSO B1158+4635 -- Quasar
  143. Cowie, Lennox L. (1991). "Young Galaxies". Annals of the New York Academy of Sciences. 647 (1 Texas/ESO–Cer): 31–41. Bibcode:1991NYASA.647...31C. doi:10.1111/j.1749-6632.1991.tb32157.x. S2CID   222074763.
  144. 1 2 New York Times, Peering to Edge of Time, Scientists Are Astonished, November 20, 1989
  145. 1 2 3 Warren, S. J.; Hewett, P. C.; Osmer, P. S.; Irwin, M. J. (1987). "Quasars of redshift z = 4.43 and z = 4.07 in the South Galactic Pole field". Nature. 330 (6147): 453. Bibcode:1987Natur.330..453W. doi:10.1038/330453a0. S2CID   4352819.
  146. Levshakov, S. A. (1989). "Absorption spectra of quasars". Astrophysics. 29 (2): 657–671. Bibcode:1988Ap.....29..657L. doi:10.1007/BF01005972. S2CID   122978350.
  147. New York Times, Objects Detected in Universe May Be the Most Distant Ever Sighted, January 14, 1988
  148. New York Times, Astronomers Peer Deeper Into Cosmos, May 10, 1988
  149. SIMBAD, Object query : Q0000-26, QSO B0000-26 – Quasar
  150. 1 2 3 4 Schmidt, Maarten; Schneider, Donald P.; Gunn, James E. (1987). "PC 0910 + 5625 – an optically selected quasar with a redshift of 4.04". Astrophysical Journal. 321: L7. Bibcode:1987ApJ...321L...7S. doi:10.1086/184996.
  151. SIMBAD, Object query : PC 0910+5625, QSO B0910+5625 -- Quasar
  152. Warren, S. J.; Hewett, P. C.; Irwin, M. J.; McMahon, R. G.; Bridgeland, M. T.; Bunclark, P. S.; Kibblewhite, E. J. (1987). "First observation of a quasar with a redshift of 4". Nature. 325 (6100): 131. Bibcode:1987Natur.325..131W. doi:10.1038/325131a0. S2CID   4335291.
  153. SIMBAD, Object query : Q0046-293, QSO J0048-2903 -- Quasar
  154. SIMBAD, Object query : Q1208+1011, QSO B1208+1011 – Quasar
  155. New Scientist, Quasar doubles help to fix the Hubble constant, 16 November 1991
  156. Orwell Astronomical Society (Ipswich) – OASI; Archived Astronomy News Items, 1972–1997 Archived 2009-09-12 at the Wayback Machine
  157. SIMBAD, Object query : PKS 2000-330, QSO J2003-3251 – Quasar
  158. 1 2 OSU Big Ear, History of the OSU Radio Observatory
  159. SIMBAD, Object query : OQ172, QSO B1442+101 – Quasar
  160. 1 2 3 "QUASARS – THREE YEARS LATER". Archived from the original on 2017-01-18. Retrieved 2010-02-17.
  161. Time Magazine , The Edge of Night, Monday, Apr. 23, 1973
  162. SIMBAD, Object query : OH471, QSO B0642+449 – Quasar
  163. Warren, S J; Hewett, P C (1990). "The detection of high-redshift quasars". Reports on Progress in Physics. 53 (8): 1095. Bibcode:1990RPPh...53.1095W. doi:10.1088/0034-4885/53/8/003. S2CID   250880776.
  164. 1 2 The Structure of the Physical Universe, Volume III – The Universe of Motion, CHAPTER 23 – Quasar Redshifts Archived 2008-06-19 at the Wayback Machine , by Dewey Bernard Larson ISBN   0-913138-11-8, 1984
  165. Bahcall, John N.; Oke, J. B. (1971). "Some Inferences from Spectrophotometry of Quasi-Stellar Sources". Astrophysical Journal. 163: 235. Bibcode:1971ApJ...163..235B. doi: 10.1086/150762 .
  166. 1 2 3 Lynds, R.; Wills, D. (1970). "The Unusually Large Redshift of 4C 05.34". Nature. 226 (5245): 532. Bibcode:1970Natur.226..532L. doi: 10.1038/226532a0 . PMID   16057373. S2CID   28297458.
  167. SIMBAD, Object query : 5C 02.56, 7C 105517.75+495540.95 – Quasar
  168. 1 2 Burbidge, Geoffrey (1968). "The Distribution of Redshifts in Quasi-Stellar Objects, N-Systems and Some Radio and Compact Galaxies". Astrophysical Journal. 154: L41. Bibcode:1968ApJ...154L..41B. doi: 10.1086/180265 .
  169. Time Magazine, A Farther-Out Quasar, Friday, Apr. 07, 1967
  170. SIMBAD, Object query : QSO B0237-2321, QSO B0237-2321 – Quasar
  171. 1 2 3 4 Burbidge, Geoffrey (1967). "On the Wavelengths of the Absorption Lines in Quasi-Stellar Objects". Astrophysical Journal. 147: 851. Bibcode:1967ApJ...147..851B. doi:10.1086/149072.
  172. 1 2 Time Magazine, The Man on the Mountain, Friday, Mar. 11, 1966
  173. SIMBAD, Object query : Q1116+12, 4C 12.39 – Quasar
  174. SIMBAD, Object query : Q0106+01, 4C 01.02 – Quasar
  175. Time Magazine, Toward the Edge of the Universe, Friday, May. 21, 1965
  176. Time Magazine, The Quasi-Quasars, Friday, Jun. 18, 1965
  177. The Cosmic Century: A History of Astrophysics and Cosmology p. 379 by Malcolm S. Longair – 2006
  178. Schmidt, Maarten (1965). "Large Redshifts of Five Quasi-Stellar Sources". Astrophysical Journal. 141: 1295. Bibcode:1965ApJ...141.1295S. doi:10.1086/148217.
  179. The Discovery of Radio Galaxies and Quasars, 1965
  180. Schmidt, Maarten; Matthews, Thomas A. (1965). "Redshifts of the Quasi-Stellar Radio Sources 3c 47 and 3c 147". Quasi-Stellar Sources and Gravitational Collapse: 269. Bibcode:1965qssg.conf..269S.
  181. Schneider, Donald P.; Van Gorkom, J. H.; Schmidt, Maarten; Gunn, James E. (1992). "Radio properties of optically selected high-redshift quasars. I – VLA observations of 22 quasars at 6 CM". Astronomical Journal. 103: 1451. Bibcode:1992AJ....103.1451S. doi:10.1086/116159.
  182. Time Magazine, Finding the Fastest Galaxy: 76,000 Miles per Second [ permanent dead link ], Friday, Apr. 10, 1964
  183. Schmidt, Maarten; Matthews, Thomas A. (1964). "Redshift of the Quasi-Stellar Radio Sources 3c 47 and 3c 147". Astrophysical Journal. 139: 781. Bibcode:1964ApJ...139..781S. doi:10.1086/147815.
  184. "The Discovery of Radio Galaxies and Quasars" . Retrieved 2010-10-22.
  185. McCarthy, Patrick J. (1993). "High Redshift Radio Galaxies". Annual Review of Astronomy and Astrophysics. 31: 639–688. Bibcode:1993ARA&A..31..639M. doi:10.1146/annurev.aa.31.090193.003231.
  186. 1 2 Sandage, Allan (1961). "The Ability of the 200-INCH Telescope to Discriminate Between Selected World Models". Astrophysical Journal. 133: 355. Bibcode:1961ApJ...133..355S. doi:10.1086/147041.
  187. Hubble, E. P. (1953). "The law of red shifts (George Darwin Lecture)". Monthly Notices of the Royal Astronomical Society. 113 (6): 658–666. Bibcode:1953MNRAS.113..658H. doi: 10.1093/mnras/113.6.658 .
  188. Sandage, Allan. "Observational Tests of World Models: 6.1. Local Tests for Linearity of the Redshift-Distance Relation". Annu. Rev. Astron. Astrophys. 1988 (26): 561–630.
  189. Humason, M. L.; Mayall, N. U.; Sandage, A. R. (1956). "Redshifts and magnitudes of extragalactic nebulae". Astronomical Journal. 61: 97. Bibcode:1956AJ.....61...97H. doi:10.1086/107297.
  190. 1 2 3 "1053 May 8 meeting of the Royal Astronomical Society". The Observatory. 73: 97. 1953. Bibcode:1953Obs....73...97.
  191. Merrill, Paul W. (1958). "From Atoms to Galaxies". Astronomical Society of the Pacific Leaflets. 7 (349): 393. Bibcode:1958ASPL....7..393M.
  192. 1 2 Humason, M. L. (January 1936). "The Apparent Radial Velocities of 100 Extra-Galactic Nebulae". The Astrophysical Journal. 83: 10. Bibcode:1936ApJ....83...10H. doi: 10.1086/143696 .
  193. "The First 50 Years At Palomar: 1949–1999; The Early Years of Stellar Evolution, Cosmology, and High-Energy Astrophysics'; 5.2.1. The Mount Wilson Years; Annu. Rev. Astron. Astrophys. 1999. 37: 445–486
  194. 1 2 Chant, C. A. (1 April 1932). "Notes and Queries (Doings at Mount Wilson-Ritchey's Photographic Telescope-Infra-red Photographic Plates)". Journal of the Royal Astronomical Society of Canada. 26: 180. Bibcode:1932JRASC..26..180C.
  195. Humason, Milton L. (July 1931). "Apparent Velocity-Shifts in the Spectra of Faint Nebulae". The Astrophysical Journal. 74: 35. Bibcode:1931ApJ....74...35H. doi:10.1086/143287.
  196. Hubble, Edwin; Humason, Milton L. (July 1931). "The Velocity-Distance Relation among Extra-Galactic Nebulae". The Astrophysical Journal. 74: 43. Bibcode:1931ApJ....74...43H. doi:10.1086/143323.
  197. 1 2 Humason, M. L. (1 January 1931). "The Large Apparent Velocities of Extra-Galactic Nebulae". Leaflet of the Astronomical Society of the Pacific. 1 (37): 149. Bibcode:1931ASPL....1..149H.
  198. 1 2 Humason, M. L. (1930). "The Rayton short-focus spectrographic objective". Astrophysical Journal. 71: 351. Bibcode:1930ApJ....71..351H. doi: 10.1086/143255 .
  199. 1 2 3 4 Trimble, Virginia (1996). "H_0: The Incredible Shrinking Constant, 1925–1975" (PDF). Publications of the Astronomical Society of the Pacific. 108: 1073. Bibcode:1996PASP..108.1073T. doi:10.1086/133837. S2CID   122165424.
  200. "The Berkeley Meeting of the Astronomical Society of the Pacific, June 20–21, 1929". Publications of the Astronomical Society of the Pacific. 41 (242): 244. 1929. Bibcode:1929PASP...41..244.. doi: 10.1086/123945 .
  201. 1 2 From the Proceedings of the National Academy of Sciences; Volume 15 : March 15, 1929 : Number 3; The Large Radial Velocity of N. G. C. 7619; January 17, 1929
  202. The Journal of the Royal Astronomical Society of Canada / Journal de la Société Royale D'astronomie du Canada; Vol. 83, No. 6 December 1989 Whole No. 621; EDWIN HUBBLE 1889–1953
  203. 1 2 National Academy of Sciences; Biographical Memoirs: V. 52 – Vesto Melvin Slipher; ISBN   0-309-03099-4
  204. Bailey, S. I. (1920). "Comet Skjellerup". Harvard College Observatory Bulletin. 739: 1. Bibcode:1920BHarO.739....1B.
  205. New York Times, DREYER NEBULA NO. 584 Inconceivably Distant; Dr. Slipher Says the Celestial Speed Champion Is 'Many Millions of Light Years' Away.; January 19, 1921, Wednesday
  206. 1 2 New York Times, Nebula Dreyer Breaks All Sky Speed Records; Portion of the Constellation of Cetus Is Rushing Along at Rate of 1,240 Miles a Second.; January 18, 1921, Tuesday
  207. Hawera & Normanby Star, "Items of Interest", 29 December 1910, Volume LX, page 3 . Retrieved 25 March 2010.
  208. Evening Star (San Jose), "Colossal Arcturus", Pittsburgh Dispatch, 10 June 1910 . Retrieved 25 March 2010.
  209. Nelson Evening Mail , "British Bloodthirstiness", 2 November 1891, Volume XXV, Issue 230, Page 3 . Retrieved 25 March 2010.
  210. "Handbook of astronomy", Dionysius Lardner & Edwin Dunkin, Lockwood & Co. (1875), p.121
  211. "The Three Heavens", Josiah Crampton, William Hunt and Company (1876), p.164
  212. (in German) Kosmos: Entwurf einer physischen Weltbeschreibung , Volume 4, Alexander von Humboldt, J. G. Cotta (1858), p.195
  213. "Outlines of Astronomy", John F. W. Herschel, Longman & Brown (1849), ch. 'Parallax of Stars', p.551 (section 851)
  214. 1 2 3 The North American Review, "The Observatory at Pulkowa", FGW Struve, Volume 69 Issue 144 (July 1849)
  215. The Sidereal Messenger, "Of the Precession of the Equinoxes, Nutation of the Earth's Axis, And Aberration of Light", Vol.1, No. 12, April 1847: 'Derby, Bradley, & Co.' Cincinnati
  216. SEDS, "Friedrich Wilhelm Bessel (July 22, 1784 – March 17, 1846)" Archived February 4, 2012, at the Wayback Machine . Retrieved 11 November 2009.
  217. Harper's New Monthly Magazine , "Some Talks of an Astronomer", Simon Newcomb, Volume 0049 Issue 294 (November 1874), pp.827 (accessed 2009-Nov-11)
  218. Jensen, Joseph B.; Tonry, John L.; Barris, Brian J.; Thompson, Rodger I.; Liu, Michael C.; Rieke, Marcia J.; Ajhar, Edward A.; Blakeslee, John P. (February 2003). "Measuring Distances and Probing the Unresolved Stellar Populations of Galaxies Using Infrared Surface Brightness Fluctuations". Astrophysical Journal. 583 (2): 712–726. arXiv: astro-ph/0210129 . Bibcode:2003ApJ...583..712J. doi:10.1086/345430. S2CID   551714.
  219. Kepple, George Robert; Glen W. Sanner (1998). The Night Sky Observer's Guide, Volume 1. Willmann-Bell, Inc. p. 18. ISBN   978-0-943396-58-3.
  220. Fodera-Serio, G.; Indorato, L.; Nastasi, P. (February 1985). "Hodierna's Observations of Nebulae and his Cosmology". Journal for the History of Astronomy. 16 (1): 1–36. Bibcode:1985JHA....16....1F. doi: 10.1177/002182868501600101 .
  221. G. Gavazzi; A. Boselli; M. Scodeggio; D. Pierini & E. Belsole (1999). "The 3D structure of the Virgo cluster from H-band Fundamental Plane and Tully-Fisher distance determinations". Monthly Notices of the Royal Astronomical Society. 304 (3): 595–610. arXiv: astro-ph/9812275 . Bibcode:1999MNRAS.304..595G. doi:10.1046/j.1365-8711.1999.02350.x. S2CID   41700753.
  222. Burnham, Robert Jr (1978). Burnham's Celestial Handbook: Volume Three, Pavo Through Vulpecula. Dover. pp.  2086–2088. ISBN   978-0-486-23673-5.
  223. "The OBEY Survey – NGC 584".
  224. "Distance Results for NGC 0001". NASA/IPAC Extragalactic Database. Retrieved 2010-05-03.
  225. Falla, D. F.; Evans, A. (1972). "On the Mass and Distance of the Quasi-Stellar Object 3C 273". Astrophysics and Space Science. 15 (3): 395. Bibcode:1972Ap&SS..15..395F. doi:10.1007/BF00649767. S2CID   124870214.
  226. Variable Star Of The Season Archived January 23, 2009, at the Wayback Machine
  227. Minkowski, R. (1960). "A New Distant Cluster of Galaxies". Astrophysical Journal. 132: 908. Bibcode:1960ApJ...132..908M. doi:10.1086/146994.
  228. "Exploding star is oldest object seen in universe". Cnn.com. 2009-04-29. Retrieved 2010-10-22.
  229. Krimm, H.; et al. (2009). "GRB 090423: Swift detection of a burst". GCN Circulars. 9198: 1. Bibcode:2009GCN..9198....1K.