JADES-GS-z13-0

Last updated

JADES-GS-z13-0
JADES-GS-z13-0.png
James Webb Space Telescope NIRCam color composite image of JADES-GS-z13-0
Observation data (J2000 epoch)
Constellation Fornax
Right ascension 03h 32m 35.97s [1] :5
Declination −27° 46 35.4 [1] :5
Redshift 13.20+0.04
−0.07
[1] :5
Distance
Apparent magnitude  (V)29.43±0.14 AB (F200W) [1] :5
Absolute magnitude  (V)−18.73±0.06 (UV) [3] :6
Characteristics
Mass 8.91+4.89
−4.34
×107
[1] :5  M
Other designations
JADES-GS+53.1499–27.7765, [1] DMM2023 UDF-22450
References: [1] :5 [3] :6

JADES-GS-z13-0 is a high-redshift Lyman-break galaxy discovered by the James Webb Space Telescope (JWST) during NIRCam imaging for the JWST Advanced Deep Extragalactic Survey (JADES) on 29 September 2022. Spectroscopic observations by JWST's NIRSpec instrument in October 2022 confirmed the galaxy's redshift of z = 13.2 to a high accuracy, establishing it as the oldest and most distant spectroscopically-confirmed galaxy known as of 2023, with a light-travel distance (lookback time) of 13.4 billion years. [4] [3] Due to the expansion of the universe, its present proper distance is approximately 33 billion light-years. [5]

JADES-GS-z13-0 is located in the Great Observatories Origins Deep Survey – South (GOODS-S) field in the constellation Fornax, which includes the Hubble Ultra Deep Field. [1] [6]

A paper in April 2023 suggests that JADES-GS-z13-0 is not in fact a galaxy, but a dark star (a hypothetical type of star of the early universe) of approximately a million solar masses. [7]

James Webb Space Telescope NIRSpec spectra of four high-redshift galaxies including JADES-GS-z13-0 Webb Spectra Reach New Milestone in Redshift Frontier.png
James Webb Space Telescope NIRSpec spectra of four high-redshift galaxies including JADES-GS-z13-0

See also

Related Research Articles

<span class="mw-page-title-main">Galaxy</span> Large gravitationally bound system of stars and interstellar matter

A galaxy is a system of stars, stellar remnants, interstellar gas, dust, and dark matter bound together by gravity. The word is derived from the Greek galaxias (γαλαξίας), literally 'milky', a reference to the Milky Way galaxy that contains the Solar System. Galaxies, averaging an estimated 100 million stars, range in size from dwarfs with less than a thousand stars, to the largest galaxies known – supergiants with one hundred trillion stars, each orbiting its galaxy's center of mass. Most of the mass in a typical galaxy is in the form of dark matter, with only a few percent of that mass visible in the form of stars and nebulae. Supermassive black holes are a common feature at the centres of galaxies.

<span class="mw-page-title-main">Redshift</span> Change of wavelength in photons during travel

In physics, a redshift is an increase in the wavelength, and corresponding decrease in the frequency and photon energy, of electromagnetic radiation. The opposite change, a decrease in wavelength and increase in frequency and energy, is known as a blueshift, or negative redshift. The terms derive from the colours red and blue which form the extremes of the visible light spectrum. The main causes of electromagnetic redshift in astronomy and cosmology are the relative motions of radiation sources, which give rise to the relativistic Doppler effect, and gravitational potentials, which gravitationally redshift escaping radiation. All sufficiently distant light sources show cosmological redshift corresponding to recession speeds proportional to their distances from Earth, a fact known as Hubble's law that implies the universe is expanding.

The following is a timeline of galaxies, clusters of galaxies, and large-scale structure of the universe.

In cosmology and physics, cold dark matter (CDM) is a hypothetical type of dark matter. According to the current standard model of cosmology, Lambda-CDM model, approximately 27% of the universe is dark matter and 68% is dark energy, with only a small fraction being the ordinary baryonic matter that composes stars, planets, and living organisms. Cold refers to the fact that the dark matter moves slowly compared to the speed of light, giving it a vanishing equation of state. Dark indicates that it interacts very weakly with ordinary matter and electromagnetic radiation. Proposed candidates for CDM include weakly interacting massive particles, primordial black holes, and axions.

A dark star is a hypothetical type of star that may have existed early in the universe before conventional stars were able to form and thrive.

<span class="mw-page-title-main">Great Observatories Origins Deep Survey</span> Astronomical survey that combines observations from 3 great NASA observatories

The Great Observatories Origins Deep Survey, or GOODS, is an astronomical survey combining deep observations from three of NASA's Great Observatories: the Hubble Space Telescope, the Spitzer Space Telescope, and the Chandra X-ray Observatory, along with data from other space-based telescopes, such as XMM Newton, and some of the world's most powerful ground-based telescopes.

Lyman-break galaxies are star-forming galaxies at high redshift that are selected using the differing appearance of the galaxy in several imaging filters due to the position of the Lyman limit. The technique has primarily been used to select galaxies at redshifts of z = 3–4 using ultraviolet and optical filters, but progress in ultraviolet astronomy and in infrared astronomy has allowed the use of this technique at lower and higher redshifts using ultraviolet and near-infrared filters.

<span class="mw-page-title-main">UDFy-38135539</span> Distant galaxy in the constellation Fornax

UDFy-38135539 is the Hubble Ultra Deep Field (UDF) identifier for a galaxy which was calculated as of October 2010 to have a light travel time of 13.1 billion years with a present proper distance of around 30 billion light-years.

<span class="mw-page-title-main">UDFj-39546284</span> High red-shift structure in the constellation Fornax

UDFj-39546284 is a high-redshift Lyman-break galaxy discovered by the Hubble Space Telescope in infrared Hubble Ultra-Deep Field (HUDF) observations in 2009. The object, located in the Fornax constellation, was identified by G. Illingworth, R. Bouwens and the HUDF09 Team during 2009 and 2010. It was reported with a redshift of z~10 using Hubble and Spitzer Space Telescope photometric data, with later reports in 2012 suggesting a possibly higher redshift of z = 11.9 Although doubts were raised that this galaxy could instead be a low-redshift interloper with extreme spectral emission lines producing the appearance of a very high redshift source, later spectroscopic observations by the James Webb Space Telescope's NIRSpec instrument in 2022 confirmed the galaxy's high redshift to a spectroscopically confirmed estimate of z = 11.58.

<span class="mw-page-title-main">MACS0647-JD</span> The farthest known galaxy from the Earth in the constellation Camelopardalis

MACS0647-JD is a galaxy with a redshift of about z = 10.7, equivalent to a light travel distance of 13.26 billion light-years. If the distance estimate is correct, it formed about 427 million years after the Big Bang.

<span class="mw-page-title-main">GN-z11</span> High-redshift galaxy in the constellation Ursa Major

GN-z11 is a high-redshift galaxy found in the constellation Ursa Major. It is among the farthest known galaxies from Earth ever discovered. The 2015 discovery was published in a 2016 paper headed by Pascal Oesch and Gabriel Brammer. Up until the discovery of JADES-GS-z13-0 in 2022 by the James Webb Space Telescope, GN-z11 was the oldest and most distant known galaxy yet identified in the observable universe, having a spectroscopic redshift of z = 10.957, which corresponds to a proper distance of approximately 32 billion light-years. Data published in 2024 established that the galaxy contains the most distant, and therefore earliest, black hole known in the universe, estimated at around 1.6 million solar masses.

<span class="mw-page-title-main">HD1</span> High-redshift galaxy that is one of the oldest and most distant known galaxies

HD1 is a proposed high-redshift galaxy, which is considered to be one of the earliest and most distant known galaxies yet identified in the observable universe. The galaxy, with an estimated redshift of approximately z = 13.27, is seen as it was about 324 million years after the Big Bang, which was 13.787 billion years ago. It has a light-travel distance of 13.463 billion light-years from Earth, and, due to the expansion of the universe, a present proper distance of 33.288 billion light-years.

<span class="mw-page-title-main">Webb's First Deep Field</span> First operational image from NASAs James Webb Space Telescope

Webb's First Deep Field is the first operational image taken by the James Webb Space Telescope (JWST). The deep-field photograph, which covers a tiny area of sky visible from the Southern Hemisphere, is centered on SMACS 0723, a galaxy cluster in the constellation of Volans. Thousands of galaxies are visible in the image, some as old as 13 billion years. It is the highest-resolution image of the early universe ever taken. Captured by the telescope's Near-Infrared Camera (NIRCam), the image was revealed to the public by NASA on 11 July 2022.

<span class="mw-page-title-main">GLASS-z12</span> Lyman-break galaxy that is one of the oldest galaxies known

GLASS-z12 is a Lyman-break galaxy discovered by the Grism Lens-Amplified Survey from Space (GLASS) observing program using the James Webb Space Telescope's NIRCam in July 2022. Spectroscopic observations of GLASS-z12 by the Atacama Large Millimeter Array (ALMA) in August 2022 confirmed that the galaxy has a spectroscopic redshift of 12.117±0.012, making it one of the earliest and most distant galaxies ever discovered, dating back to just 350 million years after the Big Bang, 13.6 billion years ago. ALMA observations detected an emission line associated with doubly ionized oxygen at 258.7 GHz with a significance of 5σ, suggesting that there is very low dust content in GLASS-z12, if not the early universe as well. Also based on oxygen-related measurements, the age of the galaxy is confirmed.

<span class="mw-page-title-main">CEERS-93316</span> Possibly one of the oldest galaxies observed

CEERS-93316 is a high-redshift galaxy with a spectroscopic redshift z=4.9. Significantly, the redshift that was initially reported was photometric and would have made CEERS-93316 the earliest and most distant known galaxy observed.

F200DB-045 is a candidate high-redshift galaxy, with an estimated redshift of approximately z = 20.4, corresponding to 168 million years after the Big Bang. If confirmed, it would be one of the earliest and most distant known galaxies observed.

<span class="mw-page-title-main">Maisie's Galaxy</span>

Maisie's Galaxy is a distant galaxy located at z=11.4 that existed 390 million years after the beginning of the universe.

<span class="mw-page-title-main">UNCOVER-z13</span> High-redshift galaxy in Sculptor constellation

UNCOVER-z13 is a high-redshift Lyman-break galaxy discovered by the James Webb Space Telescope (JWST) during NIRCam imaging for the JWST Ultradeep NIRSpec and NIRCam Observations before the Epoch of Reionization (UNCOVER) project on November 14, 2023. UNCOVER-z13 is within Abell 2744 supercluster in the constellation Sculptor.

References

  1. 1 2 3 4 5 6 7 8 Robertson, B. E.; et al. (2023). "Identification and properties of intense star-forming galaxies at redshifts z > 10". Nature Astronomy. 7 (5): 611–621. arXiv: 2212.04480 . Bibcode:2023NatAs...7..611R. doi:10.1038/s41550-023-01921-1. S2CID   257968812.
  2. Wright, Edward L. (2022). "Ned Wright's Javascript Cosmology Calculator". University of California, Los Angeles. Retrieved 24 November 2022. (H0=67.4 and OmegaM=0.315 (see Table/Planck2018 at "Lambda-CDM model#Parameters" )
  3. 1 2 3 Curtis-Lake, Emma; et al. (December 2022). "Spectroscopy of four metal-poor galaxies beyond redshift ten" (PDF). Nature. arXiv: 2212.04568 .
  4. Cesari, Thaddeus (9 December 2022). "NASA's Webb Reaches New Milestone in Quest for Distant Galaxies" . Retrieved 9 December 2022.
  5. Carpineti, A. (9 December 2022). "JWST Confirms One Of The Furthest Galaxies Ever Discovered". IFLScience . Retrieved 7 April 2024.
  6. Shen, Zili (16 December 2022). "JWST smashes the record for the earliest galaxy". Astrobites . Retrieved 16 December 2022.
  7. Ilie, Cosmin; Paulin, Jillian; Freese, Katherine (1 April 2023). "Supermassive Dark Star candidates seen by JWST?". Proceedings of the National Academy of Sciences. 120 (30): e2305762120. arXiv: 2304.01173 . Bibcode:2023PNAS..12005762I. doi:10.1073/pnas.2305762120. PMC   10372643 . PMID   37433001.