Ecosystem respiration

Last updated

Ecosystem respiration is the sum of all respiration occurring by the living organisms in a specific ecosystem. [1] The two main processes that contribute to ecosystem respiration are photosynthesis and cellular respiration. Photosynthesis uses carbon-dioxide and water, in the presence of sunlight to produce glucose and oxygen whereas cellular respiration uses glucose and oxygen to produce carbon-dioxide, water, and energy. The coordination of inputs and outputs of these two processes creates a completely interconnected system, constituting the underlying functioning of the ecosystems overall respiration.

Contents

It is the operation in which the organisms within a specified ecosystem use the process of respiration to convert organic carbon to carbon dioxide. While the amount of respiration is varied upon the type of ecosystem and the community abundance, the mechanism occurs in both aquatic and terrestrial environments.

Overview

Ocean microbial respiration Ocean deoxygenation in the Anthropocene.jpg
Ocean microbial respiration

Cellular respiration is the overall relationship between autotrophs and heterotrophs. Autotrophs are organisms that produce their own food through the process of photosynthesis, whereas heterotrophs are organisms that cannot prepare their own food and depend on autotrophs for nutrition.[ citation needed ] These two categories of living things work in coordination between photosynthesis and respiration as they both produce products that the other process utilizes. Cellular respiration happens when a cell takes glucose and oxygen and uses it to produce carbon dioxide, energy, and water. This transaction is important not only for the benefit of the cells, but for the carbon dioxide output provided, which is key in the process of photosynthesis. Without respiration, actions necessary to life, such as metabolic processes and photosynthesis, would cease. Ecosystem respiration is typically measured in the natural environment, such as a forest or grassland, rather than in the laboratory. Ecosystem respiration is the production portion of carbon dioxide in an ecosystem's carbon flux, while photosynthesis typically accounts for the majority of the ecosystem's carbon consumption. [3] Carbon is cycled throughout the ecosystem as various factors continue to uptake or release the carbon in different circumstances. Ecosystems take in carbon through photosynthesis, decomposition, and ocean uptake. [4] Ecosystems return this carbon through animal respiration, and plant respiration. [4] This constant cycle of carbon through the system is not the only element being transferred. In animal and plant respiration these living beings take in glucose and oxygen while emitting energy, carbon dioxide, and water as waste. These constant cycles provide for a influx of oxygen into the system and carbon out of the system.

Importance

In natural ecosystems, the greatest utilization of carbon is through the uptake of carbon in photosynthesis and the second greatest utilization of carbon is through the release of carbon in cellular respiration. [5] minute changes to these two fluxes can have a larger effect on the carbon dioxide in the atmosphere. [6] These two processes have a significant effect on the atmospheric carbon dioxide concentration, making their correct functioning essential to sustaining life. Without carbon dioxide, plants would not be able to carry out photosynthesis, in turn not producing oxygen, affecting all forms of life on earth. Without the presence of ecosystem respiration throughout earth's systems, it is safe to say the basic idea of "life" would be lost. Prior to these processes in earth's early years of formation, the air and oceans were anoxic. [7] An anoxic environment is one without the presence of oxygen, majorly consisting of anaerobic microbes. The evolution of oxygenic photosynthesis in the atmosphere amplified the productivity of the biosphere, increasing biodiversity. [7] With the presence of photosynthesis providing oxygen to the atmosphere, respiration soon evolved to provide the necessary components photosynthesis demanded to function. This coevolution of photosynthesis and respiration processes has led us to the biodiverse and fruitful ecosystems we know today.

See also

Related Research Articles

<span class="mw-page-title-main">Ecosystem</span> Community of living organisms together with the nonliving components of their environment

An ecosystem is a system that environments and their organisms form through their interaction. The biotic and abiotic components are linked together through nutrient cycles and energy flows.

<span class="mw-page-title-main">Nutrition</span> Provision to cells and organisms to support life

Nutrition is the biochemical and physiological process by which an organism uses food to support its life. It provides organisms with nutrients, which can be metabolized to create energy and chemical structures. Failure to obtain the required amount of nutrients causes malnutrition. Nutritional science is the study of nutrition, though it typically emphasizes human nutrition.

Respiration may refer to:

<span class="mw-page-title-main">Heterotroph</span> Organism that ingests organic carbon for nutrition

A heterotroph is an organism that cannot produce its own food, instead taking nutrition from other sources of organic carbon, mainly plant or animal matter. In the food chain, heterotrophs are primary, secondary and tertiary consumers, but not producers. Living organisms that are heterotrophic include all animals and fungi, some bacteria and protists, and many parasitic plants. The term heterotroph arose in microbiology in 1946 as part of a classification of microorganisms based on their type of nutrition. The term is now used in many fields, such as ecology, in describing the food chain.

<span class="mw-page-title-main">Cellular respiration</span> Process to convert glucose to ATP in cells

Cellular respiration is the process by which biological fuels are oxidized in the presence of an inorganic electron acceptor, such as oxygen, to drive the bulk production of adenosine triphosphate (ATP), which contains energy. Cellular respiration may be described as a set of metabolic reactions and processes that take place in the cells of organisms to convert chemical energy from nutrients into ATP, and then release waste products.

<span class="mw-page-title-main">Primary production</span> Synthesis of organic compounds from carbon dioxide by biological organisms

In ecology, primary production is the synthesis of organic compounds from atmospheric or aqueous carbon dioxide. It principally occurs through the process of photosynthesis, which uses light as its source of energy, but it also occurs through chemosynthesis, which uses the oxidation or reduction of inorganic chemical compounds as its source of energy. Almost all life on Earth relies directly or indirectly on primary production. The organisms responsible for primary production are known as primary producers or autotrophs, and form the base of the food chain. In terrestrial ecoregions, these are mainly plants, while in aquatic ecoregions algae predominate in this role. Ecologists distinguish primary production as either net or gross, the former accounting for losses to processes such as cellular respiration, the latter not.

<span class="mw-page-title-main">Energy flow (ecology)</span> Flow of energy through food chains in ecological energetics

Energy flow is the flow of energy through living things within an ecosystem. All living organisms can be organized into producers and consumers, and those producers and consumers can further be organized into a food chain. Each of the levels within the food chain is a trophic level. In order to more efficiently show the quantity of organisms at each trophic level, these food chains are then organized into trophic pyramids. The arrows in the food chain show that the energy flow is unidirectional, with the head of an arrow indicating the direction of energy flow; energy is lost as heat at each step along the way.

<span class="mw-page-title-main">Chemosynthesis</span> Biological process building organic matter using inorganic compounds as the energy source

In biochemistry, chemosynthesis is the biological conversion of one or more carbon-containing molecules and nutrients into organic matter using the oxidation of inorganic compounds or ferrous ions as a source of energy, rather than sunlight, as in photosynthesis. Chemoautotrophs, organisms that obtain carbon from carbon dioxide through chemosynthesis, are phylogenetically diverse. Groups that include conspicuous or biogeochemically important taxa include the sulfur-oxidizing Gammaproteobacteria, the Campylobacterota, the Aquificota, the methanogenic archaea, and the neutrophilic iron-oxidizing bacteria.

Bioenergetics is a field in biochemistry and cell biology that concerns energy flow through living systems. This is an active area of biological research that includes the study of the transformation of energy in living organisms and the study of thousands of different cellular processes such as cellular respiration and the many other metabolic and enzymatic processes that lead to production and utilization of energy in forms such as adenosine triphosphate (ATP) molecules. That is, the goal of bioenergetics is to describe how living organisms acquire and transform energy in order to perform biological work. The study of metabolic pathways is thus essential to bioenergetics.

<span class="mw-page-title-main">Phototroph</span> Organism using energy from light in metabolic processes

Phototrophs are organisms that carry out photon capture to produce complex organic compounds and acquire energy. They use the energy from light to carry out various cellular metabolic processes. It is a common misconception that phototrophs are obligatorily photosynthetic. Many, but not all, phototrophs often photosynthesize: they anabolically convert carbon dioxide into organic material to be utilized structurally, functionally, or as a source for later catabolic processes. All phototrophs either use electron transport chains or direct proton pumping to establish an electrochemical gradient which is utilized by ATP synthase, to provide the molecular energy currency for the cell. Phototrophs can be either autotrophs or heterotrophs. If their electron and hydrogen donors are inorganic compounds they can be also called lithotrophs, and so, some photoautotrophs are also called photolithoautotrophs. Examples of phototroph organisms are Rhodobacter capsulatus, Chromatium, and Chlorobium.

Photoheterotrophs are heterotrophic phototrophs—that is, they are organisms that use light for energy, but cannot use carbon dioxide as their sole carbon source. Consequently, they use organic compounds from the environment to satisfy their carbon requirements; these compounds include carbohydrates, fatty acids, and alcohols. Examples of photoheterotrophic organisms include purple non-sulfur bacteria, green non-sulfur bacteria, and heliobacteria. These microorganisms are ubiquitous in aquatic habitats, occupy unique niche-spaces, and contribute to global biogeochemical cycling. Recent research has also indicated that the oriental hornet and some aphids may be able to use light to supplement their energy supply.

The light compensation point (Ic) is the light intensity on the light curve where the rate of photosynthesis exactly matches the rate of cellular respiration. At this point, the uptake of CO2 through photosynthetic pathways is equal to the respiratory release of carbon dioxide, and the uptake of O2 by respiration is equal to the photosynthetic release of oxygen. The concept of compensation points in general may be applied to other photosynthetic variables, the most important being that of CO2 concentration – CO2 compensation point (Γ).Interval of time in day time when light intensity is low due to which net gaseous exchange is zero is called as compensation point.

<span class="mw-page-title-main">North American Carbon Program</span>

The North American Carbon Program (NACP) is a community-driven element of the U.S. Carbon Cycle Science Program, which established it as one of the major elements of the 2002 Strategic Plan for the U.S. Climate Change Science Program (now called the US Global Change Research Program or USGCRP). The central objective of NACP is to measure and understand carbon stocks and sources and sinks of carbon dioxide (CO2), methane (CH4), and carbon monoxide (CO) in North America and adjacent ocean regions.

<span class="mw-page-title-main">Soil respiration</span> Chemical process produced by soil and the organisms within it

Soil respiration refers to the production of carbon dioxide when soil organisms respire. This includes respiration of plant roots, the rhizosphere, microbes and fauna.

Maintenance respiration refers to metabolism occurring in an organism that is needed to maintain that organism in a healthy, living state. Maintenance respiration contrasts with growth respiration, which is responsible for the synthesis of new structures in growth, nutrient uptake, nitrogen (N) reduction and phloem loading, whereas maintenance respiration is associated with protein and membrane turnover and maintenance of ion concentrations and gradients.

<span class="mw-page-title-main">Autotroph</span> Organism type

An autotroph is an organism that produces complex organic compounds using carbon from simple substances such as carbon dioxide, generally using energy from light (photosynthesis) or inorganic chemical reactions (chemosynthesis). They convert an abiotic source of energy into energy stored in organic compounds, which can be used by other organisms. Autotrophs do not need a living source of carbon or energy and are the producers in a food chain, such as plants on land or algae in water. Autotrophs can reduce carbon dioxide to make organic compounds for biosynthesis and as stored chemical fuel. Most autotrophs use water as the reducing agent, but some can use other hydrogen compounds such as hydrogen sulfide.

<span class="mw-page-title-main">Terrestrial biological carbon cycle</span>

The carbon cycle is an essential part of life on Earth. About half the dry weight of most living organisms is carbon. It plays an important role in the structure, biochemistry, and nutrition of all living cells. Living biomass holds about 550 gigatons of carbon, most of which is made of terrestrial plants (wood), while some 1,200 gigatons of carbon are stored in the terrestrial biosphere as dead biomass.

Community respiration (CR) refers to the total amount of carbon-dioxide that is produced by individuals organisms in a given community, originating from the cellular respiration of organic material. CR is an important ecological index as it dictates the amount of production for the higher trophic levels and influence biogeochemical cycles. CR is often used as a proxy for the biological activity of the microbial community.

<span class="mw-page-title-main">Lake metabolism</span> The balance between production and consumption of organic matter in lakes

Lake metabolism represents a lake's balance between carbon fixation and biological carbon oxidation. Whole-lake metabolism includes the carbon fixation and oxidation from all organism within the lake, from bacteria to fishes, and is typically estimated by measuring changes in dissolved oxygen or carbon dioxide throughout the day.

<span class="mw-page-title-main">Net ecosystem production</span>

Net ecosystem production (NEP) in ecology, limnology, and oceanography, is the difference between gross primary production (GPP) and net ecosystem respiration. Net ecosystem production represents all the carbon produced by plants in water through photosynthesis that does not get respired by animals, other heterotrophs, or the plants themselves.

References

  1. Yvon-Durocher, Gabriel; Caffrey, Jane M.; Cescatti, Alessandro; Dossena, Matteo; Giorgio, Paul del; Gasol, Josep M.; Montoya, José M.; Pumpanen, Jukka; Staehr, Peter A. (2012-06-20). "Reconciling the temperature dependence of respiration across timescales and ecosystem types". Nature. 487 (7408): 472–476. Bibcode:2012Natur.487..472Y. doi:10.1038/nature11205. ISSN   0028-0836. PMID   22722862. S2CID   4422427.
  2. Robinson, C. (2019) "Microbial respiration, the engine of ocean deoxygenation". Frontiers in Marine Science, 5: 533. doi:10.3389/fmars.2018.00533.
  3. Lovett, Gary M.; Cole, Jonathan J.; Pace, Michael L. (2006-02-01). "Is Net Ecosystem Production Equal to Ecosystem Carbon Accumulation?". Ecosystems. 9 (1): 152–155. doi:10.1007/s10021-005-0036-3. ISSN   1435-0629. S2CID   5890190.
  4. 1 2 "Carbon cycle | National Oceanic and Atmospheric Administration". www.noaa.gov. Retrieved 2020-11-23.
  5. Gao, Xiang; Mei, Xurong; Gu, Fengxue; Hao, Weiping; Li, Haoru; Gong, Daozhi (2017-12-14). "Ecosystem respiration and its components in a rainfed spring maize cropland in the Loess Plateau, China". Scientific Reports. 7 (1): 17614. Bibcode:2017NatSR...717614G. doi: 10.1038/s41598-017-17866-1 . ISSN   2045-2322. PMC   5730584 . PMID   29242569.
  6. Suleau, Marie; Moureaux, Christine; Dufranne, Delphine; Buysse, Pauline; Bodson, Bernard; Destain, Jean-Pierre; Heinesch, Bernard; Debacq, Alain; Aubinet, Marc (2011-05-15). "Respiration of three Belgian crops: Partitioning of total ecosystem respiration in its heterotrophic, above- and below-ground autotrophic components". Agricultural and Forest Meteorology. 151 (5): 633–643. Bibcode:2011AgFM..151..633S. doi:10.1016/j.agrformet.2011.01.012. ISSN   0168-1923.
  7. 1 2 Bendall, Derek S; Howe, Christopher J; Nisbet, Euan G; Nisbet, R. Ellen R (2008-08-27). "Introduction. Photosynthetic and atmospheric evolution". Philosophical Transactions of the Royal Society B: Biological Sciences. 363 (1504): 2625–2628. doi:10.1098/rstb.2008.0058. ISSN   0962-8436. PMC   2459219 . PMID   18468981.

External references