Energy operator

Last updated

In quantum mechanics, energy is defined in terms of the energy operator, acting on the wave function of the system as a consequence of time translation symmetry.

Contents

Definition

It is given by: [1]

It acts on the wave function (the probability amplitude for different configurations of the system)

Application

The energy operator corresponds to the full energy of a system. The Schrödinger equation describes the space- and time-dependence of the slow changing (non-relativistic) wave function of a quantum system. The solution of the Schrödinger equation for a bound system is discrete (a set of permitted states, each characterized by an energy level) which results in the concept of quanta.

Schrödinger equation

Using the energy operator in the Schrödinger equation:

one obtains:

where i is the imaginary unit, ħ is the reduced Planck constant, and is the Hamiltonian operator expressed as:

From the equation, the equality can be made:, where is the expectation value of energy.

Properties

It can be shown that the expectation value of energy will always be greater than or equal to the minimum potential of the system.

Consider computing the expectation value of kinetic energy:

Hence the expectation value of kinetic energy is always non-negative. This result can be used with the linearity condition to calculate the expectation value of the total energy which is given for a normalized wavefunction as:

which complete the proof. Similarly, the same condition can be generalized to any higher dimensions.

Constant energy

Working from the definition, a partial solution for a wavefunction of a particle with a constant energy can be constructed. If the wavefunction is assumed to be separable, then the time dependence can be stated as , where E is the constant energy. In full, [2]

where is the partial solution of the wavefunction dependent on position. Applying the energy operator, we have

This is also known as the stationary state, and can be used to analyse the time-independent Schrödinger equation:

where E is an eigenvalue of energy.

Klein–Gordon equation

The relativistic mass-energy relation:

where again E = total energy, p = total 3-momentum of the particle, m = invariant mass, and c = speed of light, can similarly yield the Klein–Gordon equation:

where is the momentum operator. That is:

Derivation

The energy operator is easily derived from using the free particle wave function (plane wave solution to Schrödinger's equation). [3] Starting in one dimension the wave function is

The time derivative of Ψ is

By the De Broglie relation:

we have

Re-arranging the equation leads to

where the energy factor E is a scalar value, the energy the particle has and the value that is measured. The partial derivative is a linear operator so this expression is the operator for energy:

It can be concluded that the scalar E is the eigenvalue of the operator, while is the operator. Summarizing these results:

For a 3-d plane wave

the derivation is exactly identical, as no change is made to the term including time and therefore the time derivative. Since the operator is linear, they are valid for any linear combination of plane waves, and so they can act on any wave function without affecting the properties of the wave function or operators. Hence this must be true for any wave function. It turns out to work even in relativistic quantum mechanics, such as the Klein–Gordon equation above.

See also

Related Research Articles

In quantum mechanics, the Hamiltonian of a system is an operator corresponding to the total energy of that system, including both kinetic energy and potential energy. Its spectrum, the system's energy spectrum or its set of energy eigenvalues, is the set of possible outcomes obtainable from a measurement of the system's total energy. Due to its close relation to the energy spectrum and time-evolution of a system, it is of fundamental importance in most formulations of quantum theory.

<span class="mw-page-title-main">Particle in a box</span> Physical model in quantum mechanics which is analytically solvable

In quantum mechanics, the particle in a box model describes a particle free to move in a small space surrounded by impenetrable barriers. The model is mainly used as a hypothetical example to illustrate the differences between classical and quantum systems. In classical systems, for example, a particle trapped inside a large box can move at any speed within the box and it is no more likely to be found at one position than another. However, when the well becomes very narrow, quantum effects become important. The particle may only occupy certain positive energy levels. Likewise, it can never have zero energy, meaning that the particle can never "sit still". Additionally, it is more likely to be found at certain positions than at others, depending on its energy level. The particle may never be detected at certain positions, known as spatial nodes.

<span class="mw-page-title-main">Uncertainty principle</span> Foundational principle in quantum physics

The uncertainty principle, also known as Heisenberg's indeterminacy principle, is a fundamental concept in quantum mechanics. It states that there is a limit to the precision with which certain pairs of physical properties, such as position and momentum, can be simultaneously known. In other words, the more accurately one property is measured, the less accurately the other property can be known.

<span class="mw-page-title-main">Quantum harmonic oscillator</span> Important, well-understood quantum mechanical model

The quantum harmonic oscillator is the quantum-mechanical analog of the classical harmonic oscillator. Because an arbitrary smooth potential can usually be approximated as a harmonic potential at the vicinity of a stable equilibrium point, it is one of the most important model systems in quantum mechanics. Furthermore, it is one of the few quantum-mechanical systems for which an exact, analytical solution is known.

<span class="mw-page-title-main">Schrödinger equation</span> Description of a quantum-mechanical system

The Schrödinger equation is a linear partial differential equation that governs the wave function of a quantum-mechanical system. Its discovery was a significant landmark in the development of quantum mechanics. It is named after Erwin Schrödinger, who postulated the equation in 1925 and published it in 1926, forming the basis for the work that resulted in his Nobel Prize in Physics in 1933.

<span class="mw-page-title-main">Wave function</span> Mathematical description of the quantum state of a system

In quantum physics, a wave function is a mathematical description of the quantum state of an isolated quantum system. The most common symbols for a wave function are the Greek letters ψ and Ψ. Wave functions are composed of complex numbers. For example, a wave function might assign a complex number to each point in a region of space. The Born rule provides the means to turn these complex probability amplitudes into actual probabilities. In one common form, it says that the squared modulus of a wave function that depends upon position is the probability density of measuring a particle as being at a given place. The integral of a wavefunction's squared modulus over all the system's degrees of freedom must be equal to 1, a condition called normalization. Since the wave function is complex-valued, only its relative phase and relative magnitude can be measured; its value does not, in isolation, tell anything about the magnitudes or directions of measurable observables. One has to apply quantum operators, whose eigenvalues correspond to sets of possible results of measurements, to the wave function ψ and calculate the statistical distributions for measurable quantities.

A continuity equation or transport equation is an equation that describes the transport of some quantity. It is particularly simple and powerful when applied to a conserved quantity, but it can be generalized to apply to any extensive quantity. Since mass, energy, momentum, electric charge and other natural quantities are conserved under their respective appropriate conditions, a variety of physical phenomena may be described using continuity equations.

<span class="mw-page-title-main">Path integral formulation</span> Formulation of quantum mechanics

The path integral formulation is a description in quantum mechanics that generalizes the stationary action principle of classical mechanics. It replaces the classical notion of a single, unique classical trajectory for a system with a sum, or functional integral, over an infinity of quantum-mechanically possible trajectories to compute a quantum amplitude.

<span class="mw-page-title-main">Particle in a spherically symmetric potential</span>

In quantum mechanics, a particle in a spherically symmetric potential is a system with a potential that depends only on the distance between the particle and a center. A particle in a spherically symmetric potential can be used as an approximation, for example, of the electron in a hydrogen atom or of the formation of chemical bonds.

Creation operators and annihilation operators are mathematical operators that have widespread applications in quantum mechanics, notably in the study of quantum harmonic oscillators and many-particle systems. An annihilation operator lowers the number of particles in a given state by one. A creation operator increases the number of particles in a given state by one, and it is the adjoint of the annihilation operator. In many subfields of physics and chemistry, the use of these operators instead of wavefunctions is known as second quantization. They were introduced by Paul Dirac.

In physics, a free particle is a particle that, in some sense, is not bound by an external force, or equivalently not in a region where its potential energy varies. In classical physics, this means the particle is present in a "field-free" space. In quantum mechanics, it means the particle is in a region of uniform potential, usually set to zero in the region of interest since the potential can be arbitrarily set to zero at any point in space.

<span class="mw-page-title-main">Two-state quantum system</span> Simple quantum mechanical system

In quantum mechanics, a two-state system is a quantum system that can exist in any quantum superposition of two independent quantum states. The Hilbert space describing such a system is two-dimensional. Therefore, a complete basis spanning the space will consist of two independent states. Any two-state system can also be seen as a qubit.

In quantum mechanics, the Hellmann–Feynman theorem relates the derivative of the total energy with respect to a parameter to the expectation value of the derivative of the Hamiltonian with respect to that same parameter. According to the theorem, once the spatial distribution of the electrons has been determined by solving the Schrödinger equation, all the forces in the system can be calculated using classical electrostatics.

In quantum mechanics, the momentum operator is the operator associated with the linear momentum. The momentum operator is, in the position representation, an example of a differential operator. For the case of one particle in one spatial dimension, the definition is:

In quantum mechanics, the probability current is a mathematical quantity describing the flow of probability. Specifically, if one thinks of probability as a heterogeneous fluid, then the probability current is the rate of flow of this fluid. It is a real vector that changes with space and time. Probability currents are analogous to mass currents in hydrodynamics and electric currents in electromagnetism. As in those fields, the probability current is related to the probability density function via a continuity equation. The probability current is invariant under gauge transformation.

Photon polarization is the quantum mechanical description of the classical polarized sinusoidal plane electromagnetic wave. An individual photon can be described as having right or left circular polarization, or a superposition of the two. Equivalently, a photon can be described as having horizontal or vertical linear polarization, or a superposition of the two.

The theoretical and experimental justification for the Schrödinger equation motivates the discovery of the Schrödinger equation, the equation that describes the dynamics of nonrelativistic particles. The motivation uses photons, which are relativistic particles with dynamics described by Maxwell's equations, as an analogue for all types of particles.

The Gross–Pitaevskii equation describes the ground state of a quantum system of identical bosons using the Hartree–Fock approximation and the pseudopotential interaction model.

In quantum mechanics and quantum field theory, a Schrödinger field, named after Erwin Schrödinger, is a quantum field which obeys the Schrödinger equation. While any situation described by a Schrödinger field can also be described by a many-body Schrödinger equation for identical particles, the field theory is more suitable for situations where the particle number changes.

This is a glossary for the terminology often encountered in undergraduate quantum mechanics courses.

References

  1. Quantum Mechanics Demystified, D. McMahon, Mc Graw Hill (USA), 2006, ISBN   0-07-145546-9
  2. Young, Hugh D. (2020). Sears and Zemansky's university physics with modern physics. Roger A. Freedman, A. Lewis Ford, Hugh D. Young (15th extended ed.). Hoboken, N.J.: Pearson Education. ISBN   978-0-13-515955-2. OCLC   1057733965.
  3. Quantum Physics of Atoms, Molecules, Solids, Nuclei and Particles (2nd Edition), R. Resnick, R. Eisberg, John Wiley & Sons, 1985, ISBN   978-0-471-87373-0