Equivalence class (music)

Last updated
Equivalence class (music)
A perfect octave between two C's; equivalent but not identical
Enharmonic equivalence
Enharmonic F-sharp G-flat.png
The notes F and G are enharmonic equivalents
Enharmonic GX Bbb.png
G DoubleSharp.svg and B Doubleflat.svg are enharmonic equivalents, both the same as A
Enharmonic key sig B Cb.png
Enharmonically equivalent key signatures of B and C major, each followed by its respective tonic chord

In music theory, equivalence class is an equality (=) or equivalence between properties of sets (unordered) or twelve-tone rows (ordered sets). A relation rather than an operation, it may be contrasted with derivation. [1] "It is not surprising that music theorists have different concepts of equivalence [from each other]..." [2] "Indeed, an informal notion of equivalence has always been part of music theory and analysis. Pitch class set theory, however, has adhered to formal definitions of equivalence." [1] Traditionally, octave equivalency is assumed, while inversional, permutational, and transpositional equivalency may or may not be considered (sequences and modulations are techniques of the common practice period which are based on transpositional equivalency; similarity within difference; unity within variety/variety within unity).

A definition of equivalence between two twelve-tone series that Schuijer describes as informal despite its air of mathematical precision, and that shows its writer considered equivalence and equality as synonymous:

Two sets [twelve-tone series], P and P will be considered equivalent [equal] if and only if, for any pi,j of the first set and pi,j of the second set, for all is and js [order numbers and pitch class numbers], if i=i, then j=j. (= denotes numeral equality in the ordinary sense).

Milton Babbitt, (1992). The Function of Set Structure in the Twelve-Tone System, 8-9, cited in [3]

Forte (1963, p. 76) similarly uses equivalent to mean identical, "considering two subsets as equivalent when they consisted of the same elements. In such a case, mathematical set theory speaks of the 'equality,' not the 'equivalence,' of sets." [4] However, equality may be considered identical (equivalent in all ways) and thus contrasted with equivalence and similarity (equivalent in one or more ways but not all). For example, the C major scale, G major scale, and the major scale in all keys, are not identical but share transpositional equivalence in that the size of the intervals between scale steps is identical while pitches are not (C major has F while G major has F). The major third and the minor sixth are not identical but share inversional equivalence (an inverted M3 is a m6, an inverted m6 is a M3). A melody with the notes G A B C is not identical to a melody with the notes C B A G, but they share retrograde equivalence.

See also

Related Research Articles

In music theory, an interval is a difference in pitch between two sounds. An interval may be described as horizontal, linear, or melodic if it refers to successively sounding tones, such as two adjacent pitches in a melody, and vertical or harmonic if it pertains to simultaneously sounding tones, such as in a chord.

<span class="mw-page-title-main">Chromatic scale</span> Musical scale set of twelve pitches

The chromatic scale is a set of twelve pitches used in tonal music, with notes separated by the interval of a semitone. Chromatic instruments, such as the piano, are made to produce the chromatic scale, while other instruments capable of continuously variable pitch, such as the trombone and violin, can also produce microtones, or notes between those available on a piano.

<span class="mw-page-title-main">Enharmonic</span>

In modern musical notation and tuning, an enharmonic equivalent is a note, interval, or key signature that is equivalent to some other note, interval, or key signature but "spelled", or named differently. The enharmonic spelling of a written note, interval, or chord is an alternative way to write that note, interval, or chord. The term is derived from Latin enharmonicus, from Late Latin enarmonius, from Ancient Greek ἐναρμόνιος (enarmónios), from ἐν (en) and ἁρμονία (harmonía).

<span class="mw-page-title-main">Twelve-tone technique</span> Musical composition method

The twelve-tone technique—also known as dodecaphony, twelve-tone serialism, and twelve-note composition—is a method of musical composition first devised by Austrian composer Josef Matthias Hauer, who published his "law of the twelve tones" in 1919. In 1923, Arnold Schoenberg (1874–1951) developed his own, better-known version of 12-tone technique, which became associated with the "Second Viennese School" composers, who were the primary users of the technique in the first decades of its existence. The technique is a means of ensuring that all 12 notes of the chromatic scale are sounded as often as one another in a piece of music while preventing the emphasis of any one note through the use of tone rows, orderings of the 12 pitch classes. All 12 notes are thus given more or less equal importance, and the music avoids being in a key. Over time, the technique increased greatly in popularity and eventually became widely influential on 20th-century composers. Many important composers who had originally not subscribed to or actively opposed the technique, such as Aaron Copland and Igor Stravinsky, eventually adopted it in their music.

An octatonic scale is any eight-note musical scale. However, the term most often refers to the symmetric scale composed of alternating whole and half steps, as shown at right. In classical theory, this symmetrical scale is commonly called the octatonic scale, although there are a total of 43 enharmonically non-equivalent, transpositionally non-equivalent eight-note sets.

In music, a pitch class (p.c. or pc) is a set of all pitches that are a whole number of octaves apart; for example, the pitch class C consists of the Cs in all octaves. "The pitch class C stands for all possible Cs, in whatever octave position." Important to musical set theory, a pitch class is "all pitches related to each other by octave, enharmonic equivalence, or both." Thus, using scientific pitch notation, the pitch class "C" is the set

<span class="mw-page-title-main">Set theory (music)</span> Branch of music theory

Musical set theory provides concepts for categorizing musical objects and describing their relationships. Howard Hanson first elaborated many of the concepts for analyzing tonal music. Other theorists, such as Allen Forte, further developed the theory for analyzing atonal music, drawing on the twelve-tone theory of Milton Babbitt. The concepts of musical set theory are very general and can be applied to tonal and atonal styles in any equal temperament tuning system, and to some extent more generally than that.

In music theory, an augmented sixth chord contains the interval of an augmented sixth, usually above its bass tone. This chord has its origins in the Renaissance, was further developed in the Baroque, and became a distinctive part of the musical style of the Classical and Romantic periods.

In music theory, a trichord is a group of three different pitch classes found within a larger group. A trichord is a contiguous three-note set from a musical scale or a twelve-tone row.

In music using the twelve-tone technique, derivation is the construction of a row through segments. A derived row is a tone row whose entirety of twelve tones is constructed from a segment or portion of the whole, the generator. Anton Webern often used derived rows in his pieces. A partition is a segment created from a set through partitioning.

In music using the twelve tone technique, combinatoriality is a quality shared by twelve-tone tone rows whereby each section of a row and a proportionate number of its transformations combine to form aggregates. Much as the pitches of an aggregate created by a tone row do not need to occur simultaneously, the pitches of a combinatorially created aggregate need not occur simultaneously. Arnold Schoenberg, creator of the twelve-tone technique, often combined P-0/I-5 to create "two aggregates, between the first hexachords of each, and the second hexachords of each, respectively."

<span class="mw-page-title-main">Complement (music)</span>

In music theory, complement refers to either traditional interval complementation, or the aggregate complementation of twelve-tone and serialism.

In music, transposition refers to the process or operation of moving a collection of notes up or down in pitch by a constant interval.

The shifting of a melody, a harmonic progression or an entire musical piece to another key, while maintaining the same tone structure, i.e. the same succession of whole tones and semitones and remaining melodic intervals.

<span class="mw-page-title-main">Interval cycle</span>

In music, an interval cycle is a collection of pitch classes created from a sequence of the same interval class. In other words, a collection of pitches by starting with a certain note and going up by a certain interval until the original note is reached. In other words, interval cycles "unfold a single recurrent interval in a series that closes with a return to the initial pitch class". See: wikt:cycle.

<span class="mw-page-title-main">Multiplication (music)</span>

The mathematical operations of multiplication have several applications to music. Other than its application to the frequency ratios of intervals, it has been used in other ways for twelve-tone technique, and musical set theory. Additionally ring modulation is an electrical audio process involving multiplication that has been used for musical effect.

<span class="mw-page-title-main">Interval vector</span>

In musical set theory, an interval vector is an array of natural numbers which summarize the intervals present in a set of pitch classes. Other names include: ic vector, PIC vector and APIC vector

In music theory, an inversion is a type of change to intervals, chords, voices, and melodies. In each of these cases, "inversion" has a distinct but related meaning. The concept of inversion also plays an important role in musical set theory.

<span class="mw-page-title-main">All-interval twelve-tone row</span>

In music, an all-interval twelve-tone row, series, or chord, is a twelve-tone tone row arranged so that it contains one instance of each interval within the octave, 1 through 11. A "twelve-note spatial set made up of the eleven intervals [between consecutive pitches]." There are 1,928 distinct all-interval twelve-tone rows. These sets may be ordered in time or in register. "Distinct" in this context means in transpositionally and rotationally normal form, and disregarding inversionally related forms. These 1,928 tone rows have been independently rediscovered several times, their first computation probably was by Andre Riotte in 1961, see.

The Tone Clock, and its related compositional theory Tone-Clock Theory, is a post-tonal music composition technique, developed by composers Peter Schat and Jenny McLeod. Music written using tone-clock theory features a high economy of musical intervals within a generally chromatic musical language. This is because tone-clock theory encourages the composer to generate all their harmonic and melodic material from a limited number of intervallic configurations. Tone-clock theory is also concerned with the way that the three-note pitch-class sets can be shown to underlie larger sets, and considers these triads as a fundamental unit in the harmonic world of any piece. Because there are twelve possible triadic prime forms, Schat called them the 'hours', and imagined them arrayed in a clock face, with the smallest hour in the 1 o'clock position, and the largest hour in the 12 o'clock position. A notable feature of Tone-Clock Theory is 'tone-clock steering': transposing and/or inverting hours so that each note of the chromatic aggregate is generated once and once only.

<span class="mw-page-title-main">Common tone (scale)</span>

In music, a common tone is a pitch class that is a member of, or common to two or more scales or sets.

References

  1. 1 2 Schuijer (2008). Analyzing Atonal Music: Pitch-Class Set Theory and Its Contexts, p.85. ISBN   978-1-58046-270-9.
  2. Schuijer (2008), p.86.
  3. Schuijer (2008), p.87.
  4. Schuijer (2008), p.89.