Euteleostomi

Last updated

Contents

Euteleostomes
Temporal range:
Late SilurianPresent, 425–0  Ma [1]
Vertebrates.png
Individual organisms from each major Euteleostomi group. Clockwise, starting from top left:

Fire salamander (Amphibia), saltwater crocodile (Reptilia), southern cassowary (Aves), black-and-rufous giant elephant shrew (Mammalia), ocean sunfish (Osteichthyes)

Scientific classification OOjs UI icon edit-ltr.svg
Domain: Eukaryota
Kingdom: Animalia
Phylum: Chordata
Clade: Teleostomi
Clade: Euteleostomi
Subgroups

Euteleostomi (Eu-teleostomi [lower-alpha 1] , where Eu- comes from Greek εὖ 'well, good' [lower-alpha 2] or Euteleostomes, also known as "bony vertebrates" [lower-alpha 3] ) is a successful clade that includes more than 90% of the living species of vertebrates. Both its major subgroups are successful today: Actinopterygii includes most extant bony fish species, and Sarcopterygii includes the tetrapods.

Euteleostomes originally all had an endochondral bone, fins with lepidotrichs (fin rays), jaws lined by maxillary, premaxillary, and dentary bones composed of dermal bone, and lungs. Many of these characters have since been lost by descendant groups, however, such as lepidotrichs lost in tetrapods, and bone lost among the chondrostean fishes. Lungs have been retained in dipnoi (lungfish), and many tetrapods (birds, mammals, reptiles, and some amphibians). In many ray-finned fishes, lungs have evolved into swim bladders for regulating buoyancy, while in others they continue to be used as respiratory gas bladders. [5] [6] [7]

Euteleostomi vs. Osteichthyes

In ichthyology the difference between Euteleostomi and Osteichthyes is that the former presents a cladistic view, i.e. that the terrestrial tetrapods evolved from lobe-finned fish (Sarcopterygii). Until recently, the view of most ichthyologists has been that Osteichthyes were paraphyletic and include only bony fishes. [8] However, since 2013 widely cited ichthyology papers have been published with phylogenetic trees that treat the Osteichthyes as a clade including tetrapods, making the terms Euteleostomi and Osteichthyes synonymous. [8] [9] [10] [11]

Classification

Euteleostomi (Osteichthyes) contains the following extinct () and extant taxa: [8]

Actinopterygii

Sarcopterygii

Phylogeny

The following cladogram shows the evolutionary relationships of extant Euteleostomi (Osteichthyes).

Euteleostomi/
Osteichthyes

Notes

  1. The name Euteleostomi was coined as a monophyletic alternative that unambiguously includes the living tetrapods and is widely used in bioinformatics. [2]
  2. The clade can be defined as the living teleostomes.
  3. "Osteichthyes" in the sense of "bony vertebrates" is synonymous with Euteleostomi. [3] [note 1]

Subnotes

  1. In Linnaean taxonomy the name (literally meaning "bony fish") traditionally referred to the paraphyletic group with the exclusion of tetrapods. [4]

Related Research Articles

<span class="mw-page-title-main">Actinopterygii</span> Class of ray-finned bony fishes

Actinopterygii, members of which are known as ray-finned fish or actinopterygians, is a class of bony fish that comprise over 50% of living vertebrate species. They are so called because of their lightly built fins made of webbings of skin supported by radially extended thin bony spines called lepidotrichia, as opposed to the bulkier, fleshy lobed fins of the sister class Sarcopterygii. Resembling folding fans, the actinopterygian fins can easily change shape and wetted area, providing superior thrust-to-weight ratios per movement compared to sarcopterygian and chondrichthyian fins. The fin rays attach directly to the proximal or basal skeletal elements, the radials, which represent the articulation between these fins and the internal skeleton.

<span class="mw-page-title-main">Osteichthyes</span> Diverse group of fish with skeletons of bone rather than cartilage

Osteichthyes, also known as osteichthyans or commonly referred to as the bony fish, is a diverse superclass of vertebrate animals that have endoskeletons primarily composed of bone tissue. They can be contrasted with the Chondrichthyes and the extinct placoderms and acanthodians, which have endoskeletons primarily composed of cartilage. The vast majority of extant fish are members of Osteichthyes, being an extremely diverse and abundant group consisting of 45 orders, over 435 families and 28,000 species. It is the largest class of vertebrates in existence today, encompassing most aquatic vertebrates, as well as all semi-aquatic and terrestrial vertebrates.

<span class="mw-page-title-main">Vertebrate</span> Subphylum of chordates with backbones

Vertebrates are deuterostomal animals with bony or cartilaginous axial endoskeleton — known as the vertebral column, spine or backbone — around and along the spinal cord, including all fish, amphibians, reptiles, birds and mammals. The vertebrates consist of all the taxa within the subphylum Vertebrata and represent the overwhelming majority of the phylum Chordata, with currently about 69,963 species described.

<span class="mw-page-title-main">Tetrapod</span> Superclass of the first four-limbed vertebrates and their descendants

A tetrapod is any four-limbed vertebrate animal of the superclass Tetrapoda. Tetrapods include all extant and extinct amphibians and amniotes, with the latter in turn evolving into two major clades, the sauropsids and synapsids. Some tetrapods such as snakes, legless lizards, and caecilians had evolved to become limbless via mutations of the Hox gene, although some do still have a pair of vestigial spurs that are remnants of the hindlimbs.

<span class="mw-page-title-main">Lungfish</span> A type of bony fish

Lungfish are freshwater vertebrates belonging to the class Dipnoi. Lungfish are best known for retaining ancestral characteristics within the Osteichthyes, including the ability to breathe air, and ancestral structures within Sarcopterygii, including the presence of lobed fins with a well-developed internal skeleton. Lungfish represent the closest living relatives of the tetrapods. The mouths of lungfish typically bear tooth plates, which are used to crush hard shelled organisms.

<span class="mw-page-title-main">Sarcopterygii</span> Class of fishes

Sarcopterygii — sometimes considered synonymous with Crossopterygii — is a clade of bony fish commonly referred to as lobe-finned fish. They are characterised by prominent muscular limb buds (lobes) within their fins, which are supported by articulated appendicular skeletons. This is in contrast to the other clade of bony fish, the Actinopterygii, which have only skin-covered bony spines supporting the fins.

<span class="mw-page-title-main">Actinopteri</span> Group of fishes

Actinopteri is the sister group of Cladistia (bichirs) in the class Actinopterygii.

<span class="mw-page-title-main">Neopterygii</span> Subclass of fishes

Neopterygii is a subclass of ray-finned fish (Actinopterygii). Neopterygii includes the Holostei and the Teleostei, of which the latter comprise the vast majority of extant fishes, and over half of all living vertebrate species. While living holosteans include only freshwater taxa, teleosts are diverse in both freshwater and marine environments. Many new species of teleosts are scientifically described each year.

<span class="mw-page-title-main">Teleostomi</span> Clade of jawed vertebrates

Teleostomi is an obsolete taxon of jawed vertebrates that supposedly includes the tetrapods, bony fish, and the wholly extinct acanthodian fish. Key characters of this group include an operculum and a single pair of respiratory openings, features which were lost or modified in some later representatives. The teleostomes include all jawed vertebrates except the chondrichthyans and the extinct class Placodermi.

<span class="mw-page-title-main">Rhipidistia</span> Clade of vertebrates

Rhipidistia, also known as Dipnotetrapodomorpha, is a clade of lobe-finned fishes which includes the tetrapods and lungfishes. Rhipidistia formerly referred to a subgroup of Sarcopterygii consisting of the Porolepiformes and Osteolepiformes, a definition that is now obsolete. However, as cladistic understanding of the vertebrates has improved over the last few decades, a monophyletic Rhipidistia is now understood to include the whole of Tetrapoda and the lungfishes.

<span class="mw-page-title-main">Tetrapodomorpha</span> Clade of vertebrates

Tetrapodomorpha is a clade of vertebrates consisting of tetrapods and their closest sarcopterygian relatives that are more closely related to living tetrapods than to living lungfish. Advanced forms transitional between fish and the early labyrinthodonts, such as Tiktaalik, have been referred to as "fishapods" by their discoverers, being half-fish, half-tetrapods, in appearance and limb morphology. The Tetrapodomorpha contains the crown group tetrapods and several groups of early stem tetrapods, which includes several groups of related lobe-finned fishes, collectively known as the osteolepiforms. The Tetrapodomorpha minus the crown group Tetrapoda are the stem Tetrapoda, a paraphyletic unit encompassing the fish to tetrapod transition.

<span class="mw-page-title-main">Holostei</span> Group of bony fish

Holostei is a group of ray-finned bony fish. It is divided into two major clades, the Halecomorphi, represented by the single living genus, Amia with two species, the bowfins, as well as the Ginglymodi, the sole living representatives being the gars (Lepisosteidae), represented by seven living species in two genera. The earliest members of the clade, which are putative "semionotiforms" such as Acentrophorus and Archaeolepidotus, are known from the Middle to Late Permian and are among the earliest known neopterygians.

<i>Laccognathus</i> Extinct genus of fishes

Laccognathus is an extinct genus of amphibious lobe-finned fish from Europe and North America. They existed from the Middle Devonian to the Late Devonian. The name comes from Greek for 'pitted jaw'.

<span class="mw-page-title-main">Fish fin</span> Bony skin-covered spines or rays protruding from the body of a fish

Fins are moving appendages protruding from the body of fish that interact with water to generate thrust and help the fish swim. Apart from the tail or caudal fin, fish fins have no direct connection with the spine and are supported only by muscles.

<span class="mw-page-title-main">Evolution of fish</span> Origin and diversification of fish through geologic time

The evolution of fish began about 530 million years ago during the Cambrian explosion. It was during this time that the early chordates developed the skull and the vertebral column, leading to the first craniates and vertebrates. The first fish lineages belong to the Agnatha, or jawless fish. Early examples include Haikouichthys. During the late Cambrian, eel-like jawless fish called the conodonts, and small mostly armoured fish known as ostracoderms, first appeared. Most jawless fish are now extinct; but the extant lampreys may approximate ancient pre-jawed fish. Lampreys belong to the Cyclostomata, which includes the extant hagfish, and this group may have split early on from other agnathans.

<span class="mw-page-title-main">Evolution of tetrapods</span> Evolution of four legged vertebrates and their derivatives

The evolution of tetrapods began about 400 million years ago in the Devonian Period with the earliest tetrapods evolved from lobe-finned fishes. Tetrapods are categorized as animals in the biological superclass Tetrapoda, which includes all living and extinct amphibians, reptiles, birds, and mammals. While most species today are terrestrial, little evidence supports the idea that any of the earliest tetrapods could move about on land, as their limbs could not have held their midsections off the ground and the known trackways do not indicate they dragged their bellies around. Presumably, the tracks were made by animals walking along the bottoms of shallow bodies of water. The specific aquatic ancestors of the tetrapods, and the process by which land colonization occurred, remain unclear. They are areas of active research and debate among palaeontologists at present.

<span class="mw-page-title-main">Halecomorphi</span> Clade of fishes

Halecomorphi is a taxon of ray-finned bony fish in the clade Neopterygii. The only extant Halecomorph species are the bowfin and eyespot bowfin, but the group contains many extinct species in several families in the order Amiiformes, as well as the extinct orders Ionoscopiformes, Panxianichthyiformes, and Parasemionotiformes. The fossil record of halecomorphs goes back at least to the Early Triassic epoch.

<span class="mw-page-title-main">Percomorpha</span> Clade of ray-finned fishes

Percomorpha is a large clade of ray-finned fish with more than 17 000 known species that includes the tuna, seahorses, gobies, cichlids, flatfish, wrasse, perches, anglerfish, and pufferfish.

Cladistic classification of Sarcopterygii is the classication of Sarcopterygii as a clade containing not only the lobe-finned fishes but also the tetrapods, which are closely related to lungfish. The taxon Sarcopterygii was traditionally classified as a paraphyletic group considered either a class or a subclass of Osteichthyes. Identification of the group is based on several characteristics, such as the presence of fleshy, lobed, paired fins, which are joined to the body by a single bone.

Fishes are a paraphyletic group and for this reason, the class Pisces seen in older reference works is no longer used in formal taxonomy. Traditional classification divides fish into three extant classes, and with extinct forms sometimes classified within those groups, sometimes as their own classes:

References

  1. Zhao, W.; Zhang, X.; Jia, G.; Shen, Y.; Zhu, M. (2021). "The Silurian-Devonian boundary in East Yunnan (South China) and the minimum constraint for the lungfish-tetrapod split". Science China Earth Sciences. 64 (10): 1784–1797. Bibcode:2021ScChD..64.1784Z. doi:10.1007/s11430-020-9794-8. S2CID   236438229.
  2. Berman, Jules (25 June 2004). Evolution's Clinical Guidebook. Oxford University Press. p. 215. ISBN   0-12-817127-8 . Retrieved 14 May 2015.
  3. Nelson, Joseph (2007). Fishes of the World. John Wiley & Sons. p. 86. ISBN   978-0-471-75644-6.
  4. Cracraft, Joel; Donoghue, Michael J. (25 April 2019). Assembling the Tree of Life. Academic Press. p. 396. ISBN   978-0-19-972960-9.
  5. Clack, Jennifer A. (27 June 2012). Gaining Ground, Second Edition: The Origin and Evolution of Tetrapods. Indiana University Press. pp. 21–4. ISBN   978-0-253-00537-3 . Retrieved 12 May 2015.
  6. Longo, Sarah; Riccio, Mark; McCune, Amy R (2013). "Homology of lungs and gas bladders: Insights from arterial vasculature". Journal of Morphology. 274 (6): 687–703. doi:10.1002/jmor.20128. ISSN   0362-2525. PMID   23378277. S2CID   29995935.
  7. McCune, Amy R.; C. Schimenti, John (2012). "Using Genetic Networks and Homology to Understand the Evolution of Phenotypic Traits". Current Genomics. 13 (1): 74–84. doi:10.2174/138920212799034785. ISSN   1389-2029. PMC   3269019 . PMID   22942677.
  8. 1 2 3 Nelson, Joseph S.; Grande, Terry C.; Wilson, Mark V. H. (2016). "Teleostomi". Fishes of the World (5th ed.). Hoboken: John Wiley and Sons. pp. 96, 101. doi:10.1002/9781119174844. ISBN   978-1-118-34233-6.
  9. Betancur-R, Ricardo; et al. (2013). "The Tree of Life and a New Classification of Bony Fishes". PLOS Currents Tree of Life. 5 (Edition 1). doi: 10.1371/currents.tol.53ba26640df0ccaee75bb165c8c26288 . PMC   3644299 . PMID   23653398.
  10. Betancur-R, R., Wiley, E.O., Arratia, G., Acero, A., Bailly, N., Miya, M., Lecointre, G. and Orti, G. (2017) "Phylogenetic classification of bony fishes". BMC evolutionary biology, 17(1): 162. doi : 10.1186/s12862-017-0958-3.
  11. Hughes, L.C., Ortí, G., Huang, Y., Sun, Y., Baldwin, C.C., Thompson, A.W., Arcila, D., Betancur-R, R., Li, C., Becker, L. and Bellora, N. (2018) "Comprehensive phylogeny of ray-finned fishes (Actinopterygii) based on transcriptomic and genomic data". Proceedings of the National Academy of Sciences, 115(24): 6249–6254. doi : 10.1073/pnas.1719358115.