Evolutionary tradeoff

Last updated

An evolutionary tradeoff is a situation in which evolution cannot advance one part of a biological system without distressing another part of it. In biology, and more specifically in evolutionary biology, tradeoffs refer to the process through which a trait increases in fitness at the expense of decreased fitness in another trait. A much agreed on theory on what causes evolutionary tradeoffs is that due to resources limitations (e.g. energy, habitat/space, time) the simultaneous optimization of two traits cannot be achieved. Another commonly accepted cause of evolutionary tradeoffs is that the characteristics of increasing the fitness in one trait negatively affects the fitness of another trait. [1] [2] This negative relationship is found in traits that are antagonistically pleiotropic (one gene responsible for multiple traits that are not all beneficial to the organism) or when linkage disequilibrium is present (non-random association of alleles at different loci during the gametic phase). [3]

Contents

Background and theory

The general concept behind evolutionary tradeoffs is that in order to increase fitness (or function) in one trait it must come at the expense of the decrease in fitness/function of another trait. [4] The ‘Y-model’ states that, within an individual, any two traits are determined by resources from a common pool. Although a useful tool that has provided valuable insight, the ‘Y-model’ has been oversimplified in much of the literature. [3] Researchers have made different mathematical expansions to the ‘Y model’ in order to gain insights about evolutionary tradeoffs.

An important point that many authors make when discussing the concept of how tradeoffs affect evolutionary change is the ambiguous use of the word ‘constraint’. The term ‘constraint’ has two meanings: hindering (slowing), but not stopping evolution in particular directions, or that there are certain evolutionary trajectories that are not available to selection. The distinction between the two senses of the word is important because according to the first definition all character states, or forms, are possible, where as according to the later definition some character states are unattainable. When discussing evolutionary tradeoffs it is important to make clear which sense of the word is being used. [3]

Life history examples

Evolutionary tradeoffs can be present in a form called life history tradeoffs, which can be defined as the decrease in fitness (essentially, lifetime reproductive success) caused by one life history trait as a result of the increase in fitness caused by a different life history trait. [5] Life history traits are traits closely linked to fitness, such as traits associated with growth rate, body size, stress response, timing of reproduction, offspring quantity/quality, longevity and dispersal. [6]

A classic example of life history tradeoffs is a negative relationship between the age and the size of maturity. Growth rates are negatively correlated with maximal size so that the fastest growing individuals produce the smallest adults and slowly growing individuals produce large adults. [7] Another classic example is the tradeoff between energy investment in reproduction versus survival. If an organism has a set amount of energy that must be allocated among all the functions that individual performs, then the more energy is allocated to reproduction (increased sexual activity/size of reproductive organs), the less is available for survival (longevity/weapon size). For example, through experimental manipulation in the lab researchers were able to see that an increase in reproductive activity is correlated with a decrease in longevity in the male fruit fly ( Drosophila melanogaster ). [8] More evidence of the tradeoff between reproduction and survival comes from a study done on pinnipeds, where both genital length and testes mass are negatively associated with investment in precopulatory weaponry. [9]

Life history tradeoffs can also be thought of in the context of adaptation to a specific environment. The general theory is that increased fitness within a selected environment will cause a loss of fitness in other nonelected environments. Researchers have used experimental evolution to test this theory in Escherichia coli evolved in a 20 °C environment. They were able to see that, although not universal (meaning all individuals showed it), generally there was a decrease in fitness of the evolved E. coli when grown in a 40 °C. [10]

Human/clinical examples

Examples of tradeoffs can also be found in studies involving human subjects. A tradeoff can be seen between growth and immune function in human populations in which energy is a limiting factor. A study conducted on rural Bolivia found that children experiencing an elevated immune response had smaller gains in height than those with a normal level of immune response. This trend was stronger in children under 5 five years old, the ages when children experience rapid growth, as well as in children with less fat reserves. [11] A tradeoff has also been observed between growth and reproduction. In a study of pregnant adolescents, researchers observed that less energy was allocated to fetuses of women still growing than those who had completed their growth. [12] Tradeoffs have also been observed in clinical medicine. For example, hormone replacement therapy for post-menopausal women may reduce the risk of ovarian cancer and osteoporosis, but can increase the risk of breast cancer. This can be linked back to the fact that ovarian steroids act as both bone trophic hormones and mitotic stimulants in breast tissue. [13]

See also

Related Research Articles

<span class="mw-page-title-main">Sexual dimorphism</span> Condition where males and females exhibit different characteristics

Sexual dimorphism is the condition where sexes of the same species exhibit different morphological characteristics, particularly characteristics not directly involved in reproduction. The condition occurs in most dioecious species, which consist of most animals and some plants. Differences may include secondary sex characteristics, size, weight, color, markings, or behavioral or cognitive traits. Male-male reproductive competition has evolved a diverse array of sexually dimorphic traits. Aggressive utility traits such as "battle" teeth and blunt heads reinforced as battering rams are used as weapons in aggressive interactions between rivals. Passive displays such as ornamental feathering or song-calling have also evolved mainly through sexual selection. These differences may be subtle or exaggerated and may be subjected to sexual selection and natural selection. The opposite of dimorphism is monomorphism, when both biological sexes are phenotypically indistinguishable from each other.

A trade-off is a situational decision that involves diminishing or losing on quality, quantity, or property of a set or design in return for gains in other aspects. In simple terms, a tradeoff is where one thing increases, and another must decrease. Tradeoffs stem from limitations of many origins, including simple physics – for instance, only a certain volume of objects can fit into a given space, so a full container must remove some items in order to accept any more, and vessels can carry a few large items or multiple small items. Tradeoffs also commonly refer to different configurations of a single item, such as the tuning of strings on a guitar to enable different notes to be played, as well as an allocation of time and attention towards different tasks.

<span class="mw-page-title-main">Reproductive success</span> Passing of genes on to the next generation in a way that they too can pass on those genes

Reproductive success is an individual's production of offspring per breeding event or lifetime. This is not limited by the number of offspring produced by one individual, but also the reproductive success of these offspring themselves.

<span class="mw-page-title-main">Parental investment</span> Parental expenditure (e.g. time, energy, resources) that benefits offspring

Parental investment, in evolutionary biology and evolutionary psychology, is any parental expenditure that benefits offspring. Parental investment may be performed by both males and females, females alone or males alone. Care can be provided at any stage of the offspring's life, from pre-natal to post-natal.

<i>r</i>/<i>K</i> selection theory Ecological theory concerning the selection of life history traits

In ecology, r/K selection theory relates to the selection of combinations of traits in an organism that trade off between quantity and quality of offspring. The focus on either an increased quantity of offspring at the expense of individual parental investment of r-strategists, or on a reduced quantity of offspring with a corresponding increased parental investment of K-strategists, varies widely, seemingly to promote success in particular environments. The concepts of quantity or quality offspring are sometimes referred to as "cheap" or "expensive", a comment on the expendable nature of the offspring and parental commitment made. The stability of the environment can predict if many expendable offspring are made or if fewer offspring of higher quality would lead to higher reproductive success. An unstable environment would encourage the parent to make many offspring, because the likelihood of all of them surviving to adulthood is slim. In contrast, more stable environments allow parents to confidently invest in one offspring because they are more likely to survive to adulthood.

<i>Urosaurus ornatus</i> Species of lizard

Urosaurus ornatus, commonly known as the ornate tree lizard, is a species of lizard in the family Phrynosomatidae. The species is native to the southwestern United States and northwestern Mexico. The species, which was formerly called simply the "tree lizard", has been used to study physiological changes during the fight-or-flight response as related to stress and aggressive competition. Its life history and costs of reproduction have been documented in field populations in New Mexico and Arizona. This species has been fairly well studied because of its interesting variation in throat color in males that can correlate with different reproductive strategies,

<span class="mw-page-title-main">Phenotypic plasticity</span> Trait change of an organism in response to environmental variation

Phenotypic plasticity refers to some of the changes in an organism's behavior, morphology and physiology in response to a unique environment. Fundamental to the way in which organisms cope with environmental variation, phenotypic plasticity encompasses all types of environmentally induced changes that may or may not be permanent throughout an individual's lifespan.

Life history theory (LHT) is an analytical framework designed to study the diversity of life history strategies used by different organisms throughout the world, as well as the causes and results of the variation in their life cycles. It is a theory of biological evolution that seeks to explain aspects of organisms' anatomy and behavior by reference to the way that their life histories—including their reproductive development and behaviors, post-reproductive behaviors, and lifespan —have been shaped by natural selection. A life history strategy is the "age- and stage-specific patterns" and timing of events that make up an organism's life, such as birth, weaning, maturation, death, etc. These events, notably juvenile development, age of sexual maturity, first reproduction, number of offspring and level of parental investment, senescence and death, depend on the physical and ecological environment of the organism.

Enquiry into the evolution of ageing, or aging, aims to explain why a detrimental process such as ageing would evolve, and why there is so much variability in the lifespans of organisms. The classical theories of evolution suggest that environmental factors, such as predation, accidents, disease, and/or starvation, ensure that most organisms living in natural settings will not live until old age, and so there will be very little pressure to conserve genetic changes that increase longevity. Natural selection will instead strongly favor genes which ensure early maturation and rapid reproduction, and the selection for genetic traits which promote molecular and cellular self-maintenance will decline with age for most organisms.

<span class="mw-page-title-main">Evolutionary physiology</span> Study of changes in physiological characteristics

Evolutionary physiology is the study of the biological evolution of physiological structures and processes; that is, the manner in which the functional characteristics of individuals in a population of organisms have responded to natural selection across multiple generations during the history of the population. It is a sub-discipline of both physiology and evolutionary biology. Practitioners in the field come from a variety of backgrounds, including physiology, evolutionary biology, ecology, and genetics.

<span class="mw-page-title-main">Antagonistic pleiotropy hypothesis</span> Proposed evolutionary explanation for senescence

The antagonistic pleiotropy hypothesis was first proposed by George C. Williams in 1957 as an evolutionary explanation for senescence. Pleiotropy is the phenomenon where one gene controls more than one phenotypic trait in an organism. A gene is considered to possess antagonistic pleiotropy if it controls more than one trait, where at least one of these traits is beneficial to the organism's fitness early on in life and at least one is detrimental to the organism's fitness later on due to a decline in the force of natural selection. The theme of G.C. William's idea about antagonistic pleiotropy was that if a gene caused both increased reproduction in early life and aging in later life, then senescence would be adaptive in evolution. For example, one study suggests that since follicular depletion in human females causes both more regular cycles in early life and loss of fertility later in life through menopause, it can be selected for by having its early benefits outweigh its late costs.

Semelparity and iteroparity are two contrasting reproductive strategies available to living organisms. A species is considered semelparous if it is characterized by a single reproductive episode before death, and iteroparous if it is characterized by multiple reproductive cycles over the course of its lifetime. Iteroparity can be further divided into continuous iteroparity and seasonal iteroparity Some botanists use the parallel terms monocarpy and polycarpy.

Host–parasite coevolution is a special case of coevolution, where a host and a parasite continually adapt to each other. This can create an evolutionary arms race between them. A more benign possibility is of an evolutionary trade-off between transmission and virulence in the parasite, as if it kills its host too quickly, the parasite will not be able to reproduce either. Another theory, the Red Queen hypothesis, proposes that since both host and parasite have to keep on evolving to keep up with each other, and since sexual reproduction continually creates new combinations of genes, parasitism favours sexual reproduction in the host.

Ecoimmunology or Ecological Immunology is the study of the causes and consequences of variation in immunity. The field of ecoimmunology seeks to give an ultimate perspective for proximate mechanisms of immunology. This approach places immunology in evolutionary and ecological contexts across all levels of biological organization.

Intralocus sexual conflict is a type of sexual conflict that occurs when a genetic locus harbours alleles which have opposing effects on the fitness of each sex, such that one allele improves the fitness of males, while the alternative allele improves the fitness of females. Such "sexually antagonistic" polymorphisms are ultimately generated by two forces: (i) the divergent reproductive roles of each sex, such as conflicts over optimal mating strategy, and (ii) the shared genome of both sexes, which generates positive between-sex genetic correlations for most traits. In the long term, intralocus sexual conflict is resolved when genetic mechanisms evolve that decouple the between-sex genetic correlations between traits. This can be achieved, for example, via the evolution of sex-biased or sex-limited genes.

This glossary of biology terms is a list of definitions of fundamental terms and concepts used in biology, the study of life and of living organisms. It is intended as introductory material for novices; for more specific and technical definitions from sub-disciplines and related fields, see Glossary of cell biology, Glossary of genetics, Glossary of evolutionary biology, Glossary of ecology, Glossary of environmental science and Glossary of scientific naming, or any of the organism-specific glossaries in Category:Glossaries of biology.

The disposable soma theory of aging states that organisms age due to an evolutionary trade-off between growth, reproduction, and DNA repair maintenance. Formulated by Thomas Kirkwood, the disposable soma theory explains that an organism only has a limited amount of resources that it can allocate to its various cellular processes. Therefore, a greater investment in growth and reproduction would result in reduced investment in DNA repair maintenance, leading to increased cellular damage, shortened telomeres, accumulation of mutations, compromised stem cells, and ultimately, senescence. Although many models, both animal and human, have appeared to support this theory, parts of it are still controversial. Specifically, while the evolutionary trade-off between growth and aging has been well established, the relationship between reproduction and aging is still without scientific consensus, and the cellular mechanisms largely undiscovered.

Human reproductive ecology is a subfield in evolutionary biology that is concerned with human reproductive processes and responses to ecological variables. It is based in the natural and social sciences, and is based on theory and models deriving from human and animal biology, evolutionary theory, and ecology. It is associated with fields such as evolutionary anthropology and seeks to explain human reproductive variation and adaptations. The theoretical orientation of reproductive ecology applies the theory of natural selection to reproductive behaviors, and has also been referred to as the evolutionary ecology of human reproduction.

The temperature-size rule denotes the plastic response of organismal body size to environmental temperature variation. Organisms exhibiting a plastic response are capable of allowing their body size to fluctuate with environmental temperature. First coined by David Atkinson in 1996, it is considered to be a unique case of Bergmann's rule that has been observed in plants, animals, birds, and a wide variety of ectotherms. Although exceptions to the temperature-size rule exist, recognition of this widespread "rule" has amassed efforts to understand the physiological mechanisms underlying growth and body size variation in differing environmental temperatures.

In life history theory, the cost of reproduction hypothesis is the idea that reproduction is costly in terms of future survival and reproduction. This is mediated by various mechanisms, with the two most prominent being hormonal regulation and differential allocation of internal resources.

References

  1. Garland, T. (2014). Trade-offs. Current Biology, 24(2), R60-R61.
  2. Garland, T., Downs, C. J., & Ives, A. R. (2022). Trade-offs (and constraints) in organismal biology. Physiological and Biochemical Zoology, 95(1), 82-112.
  3. 1 2 3 Roff, D. A., & Fairbairn, D. (2007). The evolution of trade‐offs: where are we? Journal of evolutionary biology, 20(2), 433-447.
  4. Ou, Qiang; Vannier, Jean; Yang, Xianfeng; Chen, Ailin; Mai, Huijuan; Shu, Degan; Han, Jian; Fu, Dongjing; Wang, Rong (April 29, 2020). "Evolutionary trade-off in reproduction of Cambrian arthropods".
  5. Zera, A. J., & Harshman, L. G. (2001). The physiology of life history trade-offs in animals. Annual Review of Ecology and Systematics, 32(1), 95-126.
  6. Lancaster, L. A.-O., Morrison, G., & Fitt, R. N. (2017). Life history trade-offs, the intensity of competition, and coexistence in novel and evolving communities under climate change. Philosophical Transactions of the Royal Society BLID https://doi.org/10.1098/rstb.2016.0046 (Electronic)).
  7. Stearns, S. C. (1989). Trade-offs in life-history evolution. Functional Ecology, 3(3), 259-268.
  8. Partridge, L., & Farquhar, M. (1981). Sexual activity reduces lifespan of male fruit flies. Nature, 294(5841), 580-582.
  9. Fitzpatrick, J. L., Almbro, M., Gonzalez‐Voyer, A., Kolm, N., & Simmons, L. W. (2012). Male contest competition and the coevolution of weaponry and testes in pinnipeds. Evolution: International Journal of Organic Evolution, 66(11), 3595-3604.
  10. Bennett, A. F., & Lenski, R. E. (2007). An experimental test of evolutionary trade-offs during temperature adaptation. Proceedings of the National Academy of Sciences, 104(suppl 1), 8649-8654.
  11. McDade, T. W., Reyes‐García, V., Tanner, S., Huanca, T., & Leonard, W. R. (2008). Maintenance versus growth: investigating the costs of immune activation among children in lowland Bolivia. American Journal of Physical Anthropology, 136(4), 478-484.
  12. Scholl, T. O., Hediger, M. L., Schall, J. I., Khoo, C. S., & Fischer, R. L. (1994). Maternal growth during pregnancy and the competition for nutrients. The American Journal of Clinical Nutrition, 60(2), 183-188. https://doi.org/10.1093/ajcn/60.2.183.
  13. Nyirjesy, I. (2003). Breast cancer and hormone-replacement therapy: the Million Women Study. The Lancet, 362(9392), 1330.