Extraction ratio

Last updated
ParameterValue
renal blood flow RBF = 1000 mL/min
hematocrit HCT = 40%
glomerular filtration rate GFR = 120 mL/min
renal plasma flow RPF = 600 mL/min
filtration fraction FF = 20%
urine flow rate V = 1 mL/min
Sodium Inulin Creatinine PAH
SNa = 150 mEq/LSIn = 1 mg/mLSCr = 0.01 mg/mLSPAH =
UNa = 710 mEq/LUIn = 150 mg/mLUCr = 1.25 mg/mLUPAH =
C Na = 5 mL/minCIn = 150 mL/minCCr = 125 mL/min CPAH = 420 mL/min
ER = 90%
ERPF = 540 mL/min

Extraction ratio is a measure in renal physiology, primarily used to calculate renal plasma flow in order to evaluate renal function. It measures the percentage of the compound entering the kidney that was excreted into the final urine. [1]

Measured in concentration in blood plasma, it may thus be expressed as:

, where Pa is the concentration in renal artery, and Pv is the concentration in the renal vein.

For instance, para aminohippuric acid (PAH) is almost completely excreted in the final urine, and thus almost none is found in the venous return (Pv ~0). Therefore, the extraction ratio of PAH ~1. This is why PAH is used in PAH clearance to estimate renal plasma flow.

Hepatic extraction ratio


The "Hepatic Extraction Ratio" is a similar measurement for clearance of a substance (usually a pharmacological drug) by the liver. It is defined as the fraction of drug removed from blood by the liver, and depends on 3 factors— the hepatic blood flow, the uptake into the hepatocytes, and the enzyme metabolic capacity. Examples of drugs with a high hepatic extraction ratio include propranolol, opiates, and lignocaine.

Related Research Articles

Diuresis is increased urination and the physiologic process that produces such an increase. It involves extra urine production in the kidneys as part of the body's homeostatic maintenance of fluid balance.

Inulin Chemical compound

Inulins are a group of naturally occurring polysaccharides produced by many types of plants, industrially most often extracted from chicory. The inulins belong to a class of dietary fibers known as fructans. Inulin is used by some plants as a means of storing energy and is typically found in roots or rhizomes. Most plants that synthesize and store inulin do not store other forms of carbohydrate such as starch. In the United States in 2018, the Food and Drug Administration approved inulin as a dietary fiber ingredient used to improve the nutritional value of manufactured food products. Using inulin to measure kidney function is the "gold standard" for comparison with other means of estimating glomerular filtration rate.

Glomerular filtration rate Renal function test

Renal functions include maintaining an acid-base balance; regulating fluid balance; regulating sodium, potassium, and other electrolytes; clearing toxins; absorption of glucose, amino acids, and other small molecules; regulation of blood pressure; production of various hormones, such as erythropoietin; and activation of vitamin D.

Renal physiology Study of the physiology of the kidney

Renal physiology is the study of the physiology of the kidney. This encompasses all functions of the kidney, including maintenance of acid-base balance; regulation of fluid balance; regulation of sodium, potassium, and other electrolytes; clearance of toxins; absorption of glucose, amino acids, and other small molecules; regulation of blood pressure; production of various hormones, such as erythropoietin; and activation of vitamin D.

Assessment of kidney function Ways of assessing the function of the kidneys

Assessment of kidney function occurs in different ways, using the presence of symptoms and signs, as well as measurements using urine tests, blood tests, and medical imaging.

Hepatorenal syndrome Human disease

Hepatorenal syndrome is a life-threatening medical condition that consists of rapid deterioration in kidney function in individuals with cirrhosis or fulminant liver failure. HRS is usually fatal unless a liver transplant is performed, although various treatments, such as dialysis, can prevent advancement of the condition.

In pharmacology, clearance is a pharmacokinetic measurement of the volume of plasma from which a substance is completely removed per unit time. Usually, clearance is measured in L/h or mL/min. The quantity reflects the rate of drug elimination divided by plasma concentration. Excretion, on the other hand, is a measurement of the amount of a substance removed from the body per unit time. While clearance and excretion of a substance are related, they are not the same thing. The concept of clearance was described by Thomas Addis, a graduate of the University of Edinburgh Medical School.

In the physiology of the kidney, renal blood flow (RBF) is the volume of blood delivered to the kidneys per unit time. In humans, the kidneys together receive roughly 25% of cardiac output, amounting to 1.2 - 1.3 L/min in a 70-kg adult male. It passes about 94% to the cortex. RBF is closely related to renal plasma flow (RPF), which is the volume of blood plasma delivered to the kidneys per unit time.

Effective renal plasma flow (eRPF) is a measure used in renal physiology to calculate renal plasma flow (RPF) and hence estimate renal function. The eRPF can be calculated with

In medicine, the BUN-to-creatinine ratio is the ratio of two serum laboratory values, the blood urea nitrogen (BUN) (mg/dL) and serum creatinine (Cr) (mg/dL). Outside the United States, particularly in Canada and Europe, the term urea is often used. BUN only reflects the nitrogen content of urea and urea measurement reflects the whole of the molecule, urea is approximately twice that of BUN. In Canada and Europe the units are also different (mmol/L). The units of creatinine are also different (μmol/L), and this value is termed the urea-to-creatinine ratio. The ratio may be used to determine the cause of acute kidney injury or dehydration.

Plasma protein binding refers to the degree to which medications attach to proteins within the blood. A drug's efficiency may be affected by the degree to which it binds. The less bound a drug is, the more efficiently it can traverse cell membranes or diffuse. Common blood proteins that drugs bind to are human serum albumin, lipoprotein, glycoprotein, and α, β‚ and γ globulins.

Acecainide

Acecainide is an antiarrhythmic drug. Chemically, it is the N-acetylated metabolite of procainamide. It is a Class III antiarrhythmic agent, whereas procainamide is a Class Ia antiarrhythmic drug. It is only partially as active as procainamide; when checking levels, both must be included in the final calculation.

Ibutilide

Ibutilide is a Class III antiarrhythmic agent that is indicated for acute cardioconversion of atrial fibrillation and atrial flutter of a recent onset to sinus rhythm. It exerts its antiarrhythmic effect by induction of slow inward sodium current, which prolongs action potential and refractory period (physiology) of myocardial cells. Because of its Class III antiarrhythmic activity, there should not be concomitant administration of Class Ia and Class III agents.

The fractional excretion of sodium (FENa) is the percentage of the sodium filtered by the kidney which is excreted in the urine. It is measured in terms of plasma and urine sodium, rather than by the interpretation of urinary sodium concentration alone, as urinary sodium concentrations can vary with water reabsorption. Therefore, the urinary and plasma concentrations of sodium must be compared to get an accurate picture of kidney clearance. In clinical use, the fractional excretion of sodium can be calculated as part of the evaluation of acute kidney failure in order to determine if hypovolemia or decreased effective circulating plasma volume is a contributor to the kidney failure.

Silodosin

Silodosin is a medication for the symptomatic treatment of benign prostatic hyperplasia (BPH). It acts as an α1-adrenoceptor antagonist with high uroselectivity.

Cephaloridine

Cephaloridine is a first-generation semisynthetic derivative of antibiotic cephalosporin C. It is a Beta lactam antibiotic, like penicillin. Its chemical structure contains 3 cephems, 4 carboxyl groups and three pyridinium methyl groups.

Para-aminohippurate (PAH) clearance is a method used in renal physiology to measure renal plasma flow, which is a measure of renal function.

Efonidipine

Efonidipine (INN) is a dihydropyridine calcium channel blocker marketed by Shionogi & Co. of Japan. It was launched in 1995, under the brand name Landel (ランデル). The drug blocks both T-type and L-type calcium channels. Drug Controller General of India (DCGI) has approved the use of efonidipine in India. It is launched under the brand name "Efnocar".

Aminohippuric acid

Aminohippuric acid or para-aminohippuric acid (PAH), a derivative of hippuric acid, is a diagnostic agent useful in medical tests involving the kidney used in the measurement of renal plasma flow. It is an amide derivative of the amino acid glycine and para-aminobenzoic acid that is not naturally found in humans; it needs to be IV infused before diagnostic use.

Elimination (pharmacology)

In pharmacology the elimination or excretion of a drug is understood to be any one of a number of processes by which a drug is eliminated from an organism either in an unaltered form or modified as a metabolite. The kidney is the main excretory organ although others exist such as the liver, the skin, the lungs or glandular structures, such as the salivary glands and the lacrimal glands. These organs or structures use specific routes to expel a drug from the body, these are termed elimination pathways:

References

  1. Renal Mathematics Texas Tech University Health Sciences Center