FGF10

Last updated
FGF10
Protein FGF10 PDB 1nun.png
Available structures
PDB Ortholog search: PDBe RCSB
Identifiers
Aliases FGF10 , fibroblast growth factor 10
External IDs OMIM: 602115 MGI: 1099809 HomoloGene: 3284 GeneCards: FGF10
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_004465

NM_008002

RefSeq (protein)

NP_004456

NP_032028

Location (UCSC) Chr 5: 44.3 – 44.39 Mb Chr 13: 118.81 – 118.93 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

Fibroblast growth factor 10 is a protein that in humans is encoded by the FGF10 gene. [5] [6]

Contents

Function

The protein encoded by this gene is a member of the fibroblast growth factor (FGF) family. FGF family members possess broad mitogenic and cell survival activities, and are involved in a variety of biological processes, including embryonic development, cell growth, morphogenesis, tissue repair, tumor growth and invasion. Fibroblast growth factor 10 is a paracrine signaling molecule seen first in the limb bud and organogenesis development. FGF10 starts the developing of limbs and its involved in the branching of morphogenesis in multiple organs such as the lungs, skin, ear and salivary glands. During the limb development Tbx4/Tbx5 stimulate the production of FGF10 in the lateral plate mesoderm where it will create an epithelial-mesenchymal FGF signal with FGF8. This positive feedback loop will increase the amount of mesenchyme resulting in a bulge. Afterwards, FGF10 will induce the formation of apical ectodermal ridge (AER) where the foot and hands will be formed. Lung development uses the same epithelial-mesenchymal signaling from FGF10 in the foregut mesenchyme with FGFR2 in the foregut epithelium. FGF10 signaling is required for epithelial branching. Therefore, all branching morphogen organs such as the lungs, skin, ear and salivary glands required the constant expression of FGF10. This protein exhibits mitogenic activity for keratinizing epidermal cells, but essentially no activity for fibroblasts, which is similar to the biological activity of FGF7. [6]

Clinical significance

Nonsense mutations may also occur with the absence of FGF10 such as LADD and ALSG syndrome. Nevertheless, complications may arise from FGF10 signaling such as pancreatic and breast cancer. Although this gene is also implicated to be a primary factor in the process of wound healing. [6]

Animal studies

FGF10 knockout mice die right after birth. The mice showed no developing organs such as lungs, salivary glands, kidney or definitive limbs once autopsied. Studies of the mouse homolog suggested that this gene is required for embryonic epidermal morphogenesis including brain development, lung morphogenesis, and initiation of limb bud formation. [7]

See also

Related Research Articles

<span class="mw-page-title-main">Paracrine signaling</span> Form of localized cell signaling

In cellular biology, paracrine signaling is a form of cell signaling, a type of cellular communication in which a cell produces a signal to induce changes in nearby cells, altering the behaviour of those cells. Signaling molecules known as paracrine factors diffuse over a relatively short distance, as opposed to cell signaling by endocrine factors, hormones which travel considerably longer distances via the circulatory system; juxtacrine interactions; and autocrine signaling. Cells that produce paracrine factors secrete them into the immediate extracellular environment. Factors then travel to nearby cells in which the gradient of factor received determines the outcome. However, the exact distance that paracrine factors can travel is not certain.

<span class="mw-page-title-main">Basic fibroblast growth factor</span> Growth factor and signaling protein otherwise known as FGF2

Fibroblast growth factor 2, also known as basic fibroblast growth factor (bFGF) and FGF-β, is a growth factor and signaling protein encoded by the FGF2 gene. It binds to and exerts effects via specific fibroblast growth factor receptor (FGFR) proteins, themselves a family of closely related molecules. Fibroblast growth factor protein was first purified in 1975; soon thereafter three variants were isolated: 'basic FGF' (FGF2); Heparin-binding growth factor-2; and Endothelial cell growth factor-2. Gene sequencing revealed that this group is the same FGF2 protein and is a member of a family of FGF proteins.

Fibroblast growth factors (FGF) are a family of cell signalling proteins produced by macrophages; they are involved in a wide variety of processes, most notably as crucial elements for normal development in animal cells. Any irregularities in their function lead to a range of developmental defects. These growth factors typically act as systemic or locally circulating molecules of extracellular origin that activate cell surface receptors. A defining property of FGFs is that they bind to heparin and to heparan sulfate. Thus, some are sequestered in the extracellular matrix of tissues that contains heparan sulfate proteoglycans and are released locally upon injury or tissue remodeling.

<span class="mw-page-title-main">FGF3</span> Protein-coding gene in humans

INT-2 proto-oncogene protein also known as FGF-3 is a protein that in humans is encoded by the FGF3 gene.

<span class="mw-page-title-main">Perlecan</span>

Perlecan (PLC) also known as basement membrane-specific heparan sulfate proteoglycan core protein (HSPG) or heparan sulfate proteoglycan 2 (HSPG2), is a protein that in humans is encoded by the HSPG2 gene. The HSPG2 gene codes for a 4,391 amino acid protein with a molecular weight of 468,829. It is one of the largest known proteins. The name perlecan comes from its appearance as a "string of pearls" in rotary shadowed images.

<span class="mw-page-title-main">Apical ectodermal ridge</span>

The apical ectodermal ridge (AER) is a structure that forms from the ectodermal cells at the distal end of each limb bud and acts as a major signaling center to ensure proper development of a limb. After the limb bud induces AER formation, the AER and limb mesenchyme—including the zone of polarizing activity (ZPA)—continue to communicate with each other to direct further limb development.

<span class="mw-page-title-main">Hepatocyte growth factor</span> Mammalian protein found in Homo sapiens

Hepatocyte growth factor (HGF) or scatter factor (SF) is a paracrine cellular growth, motility and morphogenic factor. It is secreted by mesenchymal cells and targets and acts primarily upon epithelial cells and endothelial cells, but also acts on haemopoietic progenitor cells and T cells. It has been shown to have a major role in embryonic organ development, specifically in myogenesis, in adult organ regeneration, and in wound healing.

<span class="mw-page-title-main">Limb development</span>

Limb development in vertebrates is an area of active research in both developmental and evolutionary biology, with much of the latter work focused on the transition from fin to limb.

The limb bud is a structure formed early in vertebrate limb development. As a result of interactions between the ectoderm and underlying mesoderm, formation occurs roughly around the fourth week of development. In the development of the human embryo the upper limb bud appears in the third week and the lower limb bud appears four days later.

<span class="mw-page-title-main">Fibroblast growth factor receptor 2</span> Protein-coding gene in the species Homo sapiens

Fibroblast growth factor receptor 2 (FGFR2) also known as CD332 is a protein that in humans is encoded by the FGFR2 gene residing on chromosome 10. FGFR2 is a receptor for fibroblast growth factor.

<span class="mw-page-title-main">Fibroblast growth factor receptor 1</span> Protein-coding gene in the species Homo sapiens

Fibroblast growth factor receptor 1 (FGFR1), also known as basic fibroblast growth factor receptor 1, fms-related tyrosine kinase-2 / Pfeiffer syndrome, and CD331, is a receptor tyrosine kinase whose ligands are specific members of the fibroblast growth factor family. FGFR1 has been shown to be associated with Pfeiffer syndrome, and clonal eosinophilias.

Gremlin is an inhibitor in the TGF beta signaling pathway. It primarily inhibits bone morphogenesis and is implicated in disorders of increased bone formation and several cancers.

<span class="mw-page-title-main">FGF7</span> Protein-coding gene in the species Homo sapiens

Keratinocyte growth factor is a protein that in humans is encoded by the FGF7 gene.

<span class="mw-page-title-main">Fibroblast growth factor 8</span> Protein-coding gene in the species Homo sapiens

Fibroblast growth factor 8(FGF-8) is a protein that in humans is encoded by the FGF8 gene.

<span class="mw-page-title-main">FGF9</span> Protein-coding gene in the species Homo sapiens

Glia-activating factor is a protein that in humans is encoded by the FGF9 gene.

<span class="mw-page-title-main">FGF4</span> Fibroblast growth factor gene

Fibroblast growth factor 4 is a protein that in humans is encoded by the FGF4 gene.

<span class="mw-page-title-main">FGF18</span> Mammalian protein found in Homo sapiens

Fibroblast growth factor 18 (FGF18) is a protein that is encoded by the Fgf18 gene in humans. The protein was first discovered in 1998, when two newly-identified murine genes Fgf17 and Fgf18 were described and confirmed as being closely related by sequence homology to Fgf8. The three proteins were eventually grouped into the FGF8 subfamily, which contains several of the endocrine FGF superfamily members FGF8, FGF17, and FGF18. Subsequent studies identified FGF18's role in promoting chondrogenesis, and an apparent specific activity for the generation of the hyaline cartilage in articular joints.

<span class="mw-page-title-main">FGF6</span> Protein-coding gene in humans

Fibroblast growth factor 6 is a protein that in humans is encoded by the FGF6 gene.

<span class="mw-page-title-main">FGF12</span> Protein-coding gene in the species Homo sapiens

Fibroblast growth factor 12 is a protein that in humans is encoded by the FGF12 gene.

<span class="mw-page-title-main">FGF17</span> Protein-coding gene in the species Homo sapiens

Fibroblast growth factor 17 is a protein that in humans is encoded by the FGF17 gene.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000070193 - Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000021732 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. Emoto H, Tagashira S, Mattei MG, Yamasaki M, Hashimoto G, Katsumata T, Negoro T, Nakatsuka M, Birnbaum D, Coulier F, Itoh N (September 1997). "Structure and expression of human fibroblast growth factor-10". The Journal of Biological Chemistry. 272 (37): 23191–4. doi: 10.1074/jbc.272.37.23191 . PMID   9287324.
  6. 1 2 3 "Entrez Gene: FGF10 fibroblast growth factor 10".
  7. Itoh N, Ohta H (2014). "Fgf10: a paracrine-signaling molecule in development, disease, and regenerative medicine". Current Molecular Medicine. 14 (4): 504–9. doi:10.2174/1566524014666140414204829. PMID   24730525.

Further reading