FOCAL (spacecraft)

Last updated

FOCAL (an acronym for Fast Outgoing Cyclopean Astronomical Lens) is a proposed space telescope that would use the Sun as a gravity lens. The gravitational lens effect was first derived by Albert Einstein, [1] and the concept of a mission to the solar gravitational lens was first suggested by professor Von Eshleman, [2] and analyzed further by Italian astronomer Claudio Maccone [3] and others. [4]

Contents

In order to use the Sun as a gravity lens, it would be necessary to send the telescope to a minimum distance of 550 astronomical units away from the Sun, [3] :4–7 enabling very high signal amplifications: for example, at the 203 GHz wavelength, amplification of 1.3·1015. [5] Maccone suggests that this should be enough to obtain detailed images of the surfaces of extrasolar planets. [6]

Other uses of the mission

Even without using the Sun as the lens, FOCAL could perform various, otherwise impossible measurements: a separate telescope could be used to measure stellar distances by parallax, which would, using the baseline of 550 AU, measure the precise position of every star in the Milky Way, [3] :18 enabling various further scientific discoveries. [3] :18–22 It could also study the interstellar medium, [3] :22 the heliosphere, [3] :27 observe gravitational waves, [3] :25 check for the possible variation of the gravitational constant, [3] :25 observe the cosmic infrared background, [3] :26 characterise interplanetary dust within the Solar System, [3] :27–28 more precisely measure the mass of the Solar System [3] :26 and similar.

Limitations

FOCAL does not require any non-existing technology; however, it has various limitations. A space mission of this duration and distance has never been attempted; for comparison, the Voyager 1 and Voyager 2 probes are at distances of 147 AU and 122 AU in 2019. [7] A gravity lens will bend objects behind it, so that images from the telescope would be difficult to interpret. [5] FOCAL would be able to observe only objects that are right behind the Sun from its point of view, which means that for every observed object a new telescope would have to be made. [3] :33 [5]

A critique of the technology of the gravity lens telescope was given by Landis. [8] Some of the problems Landis points out include discussion of the interference of the solar corona, which will make the telescope signal-to-noise ratio poor, the high magnification of the target, which will make the design of the mission focal plane difficult, and an analysis of the inherent spherical aberration of the lens will limit the resolution possible.

Related Research Articles

<span class="mw-page-title-main">Interstellar travel</span> Hypothetical travel between stars or planetary systems

Interstellar travel is the hypothetical travel of spacecraft from one star system, solitary star, or planetary system to another. Interstellar travel is expected to prove much more difficult than interplanetary spaceflight due to the vast difference in the scale of the involved distances. Whereas the distance between any two planets in the Solar System is less than 30 astronomical units (AU), stars are typically separated by hundreds of thousands of AU, causing these distances to typically be expressed instead in light-years. Because of the vastness of these distances, non-generational interstellar travel based on known physics would need to occur at a high percentage of the speed of light; even so, travel times would be long, at least decades and perhaps millennia or longer.

<span class="mw-page-title-main">Lagrange point</span> Equilibrium points near two orbiting bodies

In celestial mechanics, the Lagrange points are points of equilibrium for small-mass objects under the gravitational influence of two massive orbiting bodies. Mathematically, this involves the solution of the restricted three-body problem.

<span class="mw-page-title-main">Solar sail</span> Space propulsion method using sun radiation

Solar sails are a method of spacecraft propulsion using radiation pressure exerted by sunlight on large surfaces. A number of spaceflight missions to test solar propulsion and navigation have been proposed since the 1980s. The first spacecraft to make use of the technology was IKAROS, launched in 2010.

<i>Voyager 2</i> NASA "grand tour" planetary probe

Voyager 2 is a space probe launched by NASA on August 20, 1977, to study the outer planets and interstellar space beyond the Sun's heliosphere. As a part of the Voyager program, it was launched 16 days before its twin, Voyager 1, on a trajectory that took longer to reach gas giants Jupiter and Saturn but enabled further encounters with ice giants Uranus and Neptune. Voyager 2 remains the only spacecraft to have visited either of the ice giant planets. Voyager 2 was the third of five spacecraft to achieve Solar escape velocity, which allowed it to leave the Solar System.

<span class="mw-page-title-main">Voyager program</span> Ongoing NASA program

The Voyager program is an American scientific program that employs two robotic interstellar probes, Voyager 1 and Voyager 2. They were launched in 1977 to take advantage of a favorable alignment of the two gas giants Jupiter and Saturn and the ice giants, Uranus and Neptune, to fly near them while collecting data for transmission back to Earth. After launch the decision was taken to send Voyager 2 near Uranus and Neptune to collect data for transmission back to Earth.

<span class="mw-page-title-main">Gravitational lens</span> Light bending by mass between source and observer

A gravitational lens is a distribution of matter or a point particle between a distant light source and an observer that is capable of bending the light from the source as the light travels toward the observer. This effect is known as gravitational lensing, and the amount of bending is one of the predictions of Albert Einstein's general theory of relativity. Treating light as corpuscles travelling at the speed of light, Newtonian physics also predicts the bending of light, but only half of that predicted by general relativity.

<span class="mw-page-title-main">Einstein ring</span> Feature seen when light is gravitationally lensed by an object

An Einstein ring, also known as an Einstein–Chwolson ring or Chwolson ring, is created when light from a galaxy or star passes by a massive object en route to the Earth. Due to gravitational lensing, the light is diverted, making it seem to come from different places. If source, lens, and observer are all in perfect alignment, the light appears as a ring.

<span class="mw-page-title-main">Twin Quasar</span> Gravitationally lensed quasar

The Twin Quasar, was discovered in 1979 and was the first identified gravitationally lensed object, not to be confused with the first detection of light deflection in 1919. It is a quasar that appears as two images, a result from gravitational lensing caused by the galaxy YGKOW G1 that is located directly between Earth and the quasar.

In astrodynamics, orbital station-keeping is keeping a spacecraft at a fixed distance from another spacecraft or celestial body. It requires a series of orbital maneuvers made with thruster burns to keep the active craft in the same orbit as its target. For many low Earth orbit satellites, the effects of non-Keplerian forces, i.e. the deviations of the gravitational force of the Earth from that of a homogeneous sphere, gravitational forces from Sun/Moon, solar radiation pressure and air drag, must be counteracted.

<span class="mw-page-title-main">Interstellar probe</span> Space probe that can travel out of the Solar System

An interstellar probe is a space probe that has left—or is expected to leave—the Solar System and enter interstellar space, which is typically defined as the region beyond the heliopause. It also refers to probes capable of reaching other star systems.

11264 Claudiomaccone, provisional designation 1979 UC4, is a stony background asteroid and binary system from the middle regions of the asteroid belt, approximately 3 kilometers in diameter. It was discovered 16 October 1979, by Nikolai Chernykh at Crimean Astrophysical Observatory in Nauchnyj, on the Crimean peninsula. It was named after the Italian astronomer Claudio Maccone.

<span class="mw-page-title-main">NASA Institute for Advanced Concepts</span> NASA program

The NASA Institute for Advanced Concepts (NIAC) is a NASA program for development of far reaching, long term advanced concepts by "creating breakthroughs, radically better or entirely new aerospace concepts". The program operated under the name NASA Institute for Advanced Concepts from 1998 until 2007 (managed by the Universities Space Research Association on behalf of NASA), and was reestablished in 2011 under the name NASA Innovative Advanced Concepts and continues to the present. The NIAC program funds work on revolutionary aeronautics and space concepts that can dramatically impact how NASA develops and conducts its missions.

The Einstein radius is the radius of an Einstein ring, and is a characteristic angle for gravitational lensing in general, as typical distances between images in gravitational lensing are of the order of the Einstein radius.

<span class="mw-page-title-main">Claudio Maccone</span> Italian astronomer (1948–)

Claudio Maccone is an Italian SETI astronomer, space scientist and mathematician.

<span class="mw-page-title-main">TAU (spacecraft)</span> Cancelled NASA space probe to travel 1000 AU from the Sun

TAU was a proposed uncrewed interstellar probe that would go to a distance of one thousand astronomical units from the Earth and Sun by the NASA Jet Propulsion Laboratory in 1987 using tested technology. One scientific purpose would be to measure the distance to other stars via stellar parallax. Studies continued into 1990, working with a launch in the 2005–2010 timeframe.

<span class="mw-page-title-main">Exploration of Neptune</span> Overview of the exploration of Neptune

Neptune has been directly explored by one space probe, Voyager 2, in 1989. As of December 2022, there are no confirmed future missions to visit the Neptunian system, although a tentative Chinese mission has been planned for launch in 2024. NASA, ESA, and independent academic groups have proposed future scientific missions to visit Neptune. Some mission plans are still active, while others have been abandoned or put on hold.

<span class="mw-page-title-main">Interstellar object</span> Astronomical object not gravitationally bound to a star

An interstellar object is an astronomical object in interstellar space that is not gravitationally bound to a star. This term can also be applied to an object that is on an interstellar trajectory but is temporarily passing close to a star, such as certain asteroids and comets. In the latter case, the object may be called an interstellar interloper.

<span class="mw-page-title-main">2I/Borisov</span> Interstellar comet passing through the Solar System, discovered in 2019

2I/Borisov, originally designated C/2019 Q4 (Borisov), is the first observed rogue comet and the second observed interstellar interloper after ʻOumuamua. It was discovered by the Crimean amateur astronomer and telescope maker Gennadiy Borisov on 29 August 2019 UTC.

<span class="mw-page-title-main">Solar gravitational lens</span> Concept of using the Sun as a large lens

A solar gravitational lens (SGL) is a theoretical method of using the Sun as a large lens with a physical effect called gravitational lensing. It is considered the best method to directly image habitable exoplanets.

References

  1. Einstein, Albert (1936). "Lens-Like Action of a Star by the Deviation of Light in the Gravitational Field". Science. 84 (2188): 506–507. Bibcode:1936Sci....84..506E. doi:10.1126/science.84.2188.506. PMID   17769014.
  2. Eshleman, V. R. (1979). "Gravitational Lens of the Sun: Its Potential for Observations and Communications over Interstellar Distances". Science. 205 (4411): 1133–1135. Bibcode:1979Sci...205.1133E. doi:10.1126/science.205.4411.1133. ISSN   0036-8075. PMID   17735051. S2CID   27692082.
  3. 1 2 3 4 5 6 7 8 9 10 11 12 Maccone, Claudio (2009-06-09). Deep Space Flight and Communications: Exploiting the Sun as a Gravitational Lens. Berlin: Springer Science & Business Media. ISBN   9783540729426 . Retrieved 2015-01-18.
  4. Turyshev, S. G. and Andersson, B-G., “The 550-AU Mission: a critical discussion”, Mon. Not. R. Astron. Soc. 341, pp. 577–582 (2003).
  5. 1 2 3 Chorost, Michael (2013-06-26). "The Seventy-Billion-Mile Telescope". The New Yorker.
  6. Villard, Ray (2011-01-10). "Using The Sun as a Magnifying Glass". Archived from the original on 2014-05-19.
  7. Most distant space probes.
  8. Landis, Geoffrey A., “Mission to the Gravitational Focus of the Sun: A Critical Analysis,” paper AIAA-2017-1679, AIAA Science and Technology Forum and Exposition 2017, Grapevine TX, January 9–13, 2017. Preprint at arXiv.org (accessed 24 December 2016).