Genetics of synesthesia

Last updated

The genetic mechanism of synesthesia has long been debated, with researchers previously claiming it was a single X-linked trait due to seemingly higher prevalence in women and no evidence of male-male transmission [1] This is where the only synesthetic parent is male and the male child has synesthesia, [2] [3] meaning that the trait cannot be solely linked to the X chromosome.

The Mendelian nature of the trait was further disproven when case studies showed that the Phenotype of synesthesia could be differentially expressed in monozygotic (genotypically identical) twins [4] While both twins had the same genome with the potential for phenotypic expression of synesthesia, only one had documented synesthesia. Therefore, the condition is now thought to be oligogenic, with Locus heterogeneity and multiple forms of inheritance, and expression, [5] implying that synesthesia is determined by more than one gene, more than one location in those genes, and a complex mode of inheritance. Several full genome linkage scans have shown particular areas of the genome whose inheritance seem to correlate with the inheritance of synesthesia.

Using the LOD score which describes the likelihood that two genes are near each other on a chromosome, and thus will be inherited together, areas of strong or suggestive linkage with inheritance of synesthesia were found. [6] The area with the highest LOD score in the genome of an individual with auditory-visual synesthesia has been shown to be linked with autism as well, [7] another disorder with sensory and perceptual abnormalities. Other regions of linkage include genes that are related to the development of the cerebral cortex (TBR1), dyslexia, and apoptosis (EFHC1), [8] the last of which could be potentially related to the retention of the neonatal synesthetic pathways in the universal synesthesia/pruning hypothesis. This hypothesis posits that every person is born a synesthete and the ‘extra’ connections are pruned during normal neurodevelopment in non-synesthetes, and not pruned in synesthetes. [9]

More potential support for that hypothesis comes from another region identified with strong linkage, which contains a gene (DPYSL3) which is involved in axonal growth, neuroplasticity, and neuronal differentiation. [10] Additionally, this gene is not expressed in the adult brain but is highly expressed in the late-fetal and early post-natal brain and spinal cord, providing more support for a universal “neonatal synesthesia” that is pruned away through natural development. [11]

Another genome scan [12] revealed a different area of linkage for an individual with colored sequence synesthesia: one which associates days of the week with colors. In that individual, the linked region contained genes that produces proteins important for intercellular communication (GABARAPL2), genes that are involved in brain development (NDRG4), genes linked to neuron myelination (PLLP), genes that produce enzymes involved in neuronal pruning (KATNB1), genes that produce Apoptosis inhibitors expressed in fetal brains (CIAPIN1), and genes that produce proteins that have differential expression in individuals with schizophrenia (GNAO1).

Due to the prevalence of synesthesia among the first-degree relatives of synesthetes, [13] there is evidence that synesthesia might have a genetic basis, however the monozygotic twins case studies indicate there is an epigenetic component. Synesthesia might also be an oligogenic condition, with Locus heterogeneity, multiple forms of inheritance (including Mendelian in some cases), and continuous variation in gene expression.

See also

Related Research Articles

Genetics Science of genes, heredity, and variation in living organisms

Genetics is a branch of biology concerned with the study of genes, genetic variation, and heredity in organisms.

Epigenetics Study of heritable DNA and histone modifications that affect the expression of a gene without a change in its nucleotide sequence.

In biology, epigenetics is the study of heritable phenotype changes that do not involve alterations in the DNA sequence. The Greek prefix epi- in epigenetics implies features that are "on top of" or "in addition to" the traditional genetic basis for inheritance. Epigenetics most often involves changes that affect gene activity and expression, but the term can also be used to describe any heritable phenotypic change. Such effects on cellular and physiological phenotypic traits may result from external or environmental factors, or be part of normal development. The standard definition of epigenetics requires these alterations to be heritable in the progeny of either cells or organisms.

Genetic linkage is the tendency of DNA sequences that are close together on a chromosome to be inherited together during the meiosis phase of sexual reproduction. Two genetic markers that are physically near to each other are unlikely to be separated onto different chromatids during chromosomal crossover, and are therefore said to be more linked than markers that are far apart. In other words, the nearer two genes are on a chromosome, the lower the chance of recombination between them, and the more likely they are to be inherited together. Markers on different chromosomes are perfectly unlinked.

A quantitative trait locus (QTL) is a locus that correlates with variation of a quantitative trait in the phenotype of a population of organisms. QTLs are mapped by identifying which molecular markers correlate with an observed trait. This is often an early step in identifying and sequencing the actual genes that cause the trait variation.

Human genetics

Human genetics is the study of inheritance as it occurs in human beings. Human genetics encompasses a variety of overlapping fields including: classical genetics, cytogenetics, molecular genetics, biochemical genetics, genomics, population genetics, developmental genetics, clinical genetics, and genetic counseling.

Y linkage Traits produced by genes located on the Y chromosome

Y linkage, also known as holandric inheritance, describes traits that are produced by genes located on the Y chromosome. It is a form of sex linkage.

Diamond–Blackfan anemia (DBA) is a congenital erythroid aplasia that usually presents in infancy. DBA causes low red blood cell counts (anemia), without substantially affecting the other blood components, which are usually normal. This is in contrast to Shwachman–Bodian–Diamond syndrome, in which the bone marrow defect results primarily in neutropenia, and Fanconi anemia, where all cell lines are affected resulting in pancytopenia.

Heritability of autism

The heritability of autism is the proportion of differences in expression of autism that can be explained by genetic variation; if the heritability of a condition is high, then the condition is considered to be primarily genetic. Autism has a strong genetic basis, although the genetics of autism are complex and it is unclear whether autism spectrum disorder (ASD) is explained more by multigene interactions or by rare mutations with major effects.

Medical genetics

Medical genetics is the branch of medicine that involves the diagnosis and management of hereditary disorders. Medical genetics differs from human genetics in that human genetics is a field of scientific research that may or may not apply to medicine, while medical genetics refers to the application of genetics to medical care. For example, research on the causes and inheritance of genetic disorders would be considered within both human genetics and medical genetics, while the diagnosis, management, and counselling people with genetic disorders would be considered part of medical genetics.

Xq28 is a chromosome band and genetic marker situated at the tip of the X chromosome which has been studied since at least 1980. The band contains three distinct regions, totaling about 8 Mbp of genetic information. The marker came to the public eye in 1993 when studies by Dean Hamer and others indicated a link between the Xq28 marker and male sexual orientation.

Synesthesia is a neurological condition in which two or more bodily senses are coupled. For example, in a form of synesthesia known as Grapheme → color synesthesia, letters or numbers may be perceived as inherently colored. In another, called number → form synesthesia, numbers are automatically and consistently associated with locations in space. In yet another form of synesthesia, called ordinal linguistic personification, either numbers, days of the week, or months of the year evoke personalities. In other forms of synesthesia, music and other sounds may be perceived as colored or having particular shapes. Recent research has begun to explore the neural basis of these experiences, drawing both on neuroscientific principles and on functional neuroimaging data.

In genetics, complete linkage is defined as the state in which two loci are so close together that alleles of these loci are virtually never separated by crossing over. The closer the physical location of two genes on the DNA, the less likely they are to be separated by a crossing-over event. In the case of male Drosophila there is complete absence of recombinant types due to absence of crossing over. This means that all of the genes that start out on a single chromosome, will end up on that same chromosome in their original configuration. In the absence of recombination, only parental phenotypes are expected.

Chromesthesia Sound to color synesthesia

Chromesthesia or sound-to-color synesthesia is a type of synesthesia in which sound involuntarily evokes an experience of color, shape, and movement. Individuals with sound-color synesthesia are consciously aware of their synesthetic color associations/perceptions in daily life. Synesthetes that perceive color while listening to music, experience the colors in addition to the normal auditory sensations. The synesthetic color experience supplements, but does not obscure real, modality-specific perceptions. As with other forms of synesthesia, individuals with sound-color synesthesia perceive it spontaneously, without effort, and as their normal realm of experience. Chromesthesia can be induced by different auditory experiences, such as music, phonemes, speech, and/or everyday sounds.

Genome-wide association study Study to research genome-wide set of genetic variants in different individuals to see if any variant is associated with a trait.

In genetics, a genome-wide association study, also known as whole genome association study, is an observational study of a genome-wide set of genetic variants in different individuals to see if any variant is associated with a trait. GWASs typically focus on associations between single-nucleotide polymorphisms (SNPs) and traits like major human diseases, but can equally be applied to any other genetic variants and any other organisms.

Synesthesia Neurological condition involving the crossing of senses

Synesthesia or synaesthesia is a perceptual phenomenon in which stimulation of one sensory or cognitive pathway leads to involuntary experiences in a second sensory or cognitive pathway. People who report a lifelong history of such experiences are known as synesthetes (sin-es-the-t). Awareness of synesthetic perceptions varies from person to person. In one common form of synesthesia, known as grapheme–color synesthesia or color–graphemic synesthesia, letters or numbers are perceived as inherently colored. In spatial-sequence, or number form synesthesia, numbers, months of the year, or days of the week elicit precise locations in space, or may appear as a three-dimensional map. Synesthetic associations can occur in any combination and any number of senses or cognitive pathways.

Behavioural genetics, also referred to as behaviour genetics, is a field of scientific research that uses genetic methods to investigate the nature and origins of individual differences in behaviour. While the name "behavioural genetics" connotes a focus on genetic influences, the field broadly investigates genetic and environmental influences, using research designs that allow removal of the confounding of genes and environment. Behavioural genetics was founded as a scientific discipline by Francis Galton in the late 19th century, only to be discredited through association with eugenics movements before and during World War II. In the latter half of the 20th century, the field saw renewed prominence with research on inheritance of behaviour and mental illness in humans, as well as research on genetically informative model organisms through selective breeding and crosses. In the late 20th and early 21st centuries, technological advances in molecular genetics made it possible to measure and modify the genome directly. This led to major advances in model organism research and in human studies, leading to new scientific discoveries.

Classical genetics is the branch of genetics based solely on visible results of reproductive acts. It is the oldest discipline in the field of genetics, going back to the experiments on Mendelian inheritance by Gregor Mendel who made it possible to identify the basic mechanisms of heredity. Subsequently, these mechanisms have been studied and explained at the molecular level.

Mega2 allows the applied statistical geneticist to convert one's data from several input formats to a large number output formats suitable for analysis by commonly used software packages. In a typical human genetics study, the analyst often needs to use a variety of different software programs to analyze the data, and these programs usually require that the data be formatted to their precise input specifications. Conversion of one's data into these multiple different formats can be tedious, time-consuming, and error-prone. Mega2, by providing validated conversion pipelines, can accelerate the analyses while reducing errors.

Oligogenic inheritance describes a trait that is influenced by a few genes. Oligogenic inheritance represents an intermediate between monogenic inheritance in which a trait is determined by a single causative gene, and polygenic inheritance, in which a trait is influenced by many genes and often environmental factors.

Mendelian traits behave according to the model of monogenic or simple gene inheritance in which one gene corresponds to one trait. Discrete traits with simple Mendelian inheritance patterns are relatively rare in nature, and many of the clearest examples in humans cause disorders. Discrete traits found in humans are common examples for teaching genetics.

References

  1. Smilek, Daniel; Moffat, Barbara A; Pasternak, J; White, B.N.; Dixon, M.J.; Merikle, P.M. (October 1, 2002). "Synaesthesia: a case study of discordant monozygotic twins". Neurocase. 8 (4): 338–342. doi:10.1076/neur.8.3.338.16194. PMID   12221147.
  2. Ward, Jamie; Simner, Julia (May 2005). "Is synaesthesia an X-linked dominant trait with lethality in males?" (PDF). Perception. 34 (5): 611–623. doi:10.1068/p5250. PMID   15991697.
  3. Simner, Julia; Carmichael, Duncan A. (2015). "Is synaesthesia a dominantly female trait?". Cognitive Neuroscience. 6 (2–3): 68–76. doi:10.1080/17588928.2015.1019441. PMC   4566887 . PMID   25732702.
  4. Smilek, Daniel; Moffat, Barbara A; Pasternak, J; White, B.N.; Dixon, M.J.; Merikle, P.M. (October 1, 2002). "Synaesthesia: a case study of discordant monozygotic twins". Neurocase. 8 (4): 338–342. doi:10.1076/neur.8.3.338.16194. PMID   12221147.
  5. Asher, Julian E.; Lamb, Janine A.; Brocklebank, Denise; Cazier, Jean-Baptiste; Maestrini, Elena; Addis, Laura; Sen, Mallika; Baron-Cohen, Simon; Monaco, Anthony P. (13 February 2009). "A Whole-Genome Scan and Fine-Mapping Linkage Study of Auditory-Visual Synesthesia Reveals Evidence of Linkage to Chromosomes 2q24, 5q33, 6p12, and 12p12". The American Journal of Human Genetics. 84 (2): 279–285. doi:10.1016/j.ajhg.2009.01.012. PMC   2668015 . PMID   19200526.
  6. Asher, Julian E.; Lamb, Janine A.; Brocklebank, Denise; Cazier, Jean-Baptiste; Maestrini, Elena; Addis, Laura; Sen, Mallika; Baron-Cohen, Simon; Monaco, Anthony P. (13 February 2009). "A Whole-Genome Scan and Fine-Mapping Linkage Study of Auditory-Visual Synesthesia Reveals Evidence of Linkage to Chromosomes 2q24, 5q33, 6p12, and 12p12". The American Journal of Human Genetics. 84 (2): 279–285. doi:10.1016/j.ajhg.2009.01.012. PMC   2668015 . PMID   19200526.
  7. Palferman, Sarah; Matthews, Nicola; Turner, Michelle; Moore, J.; Hervas, Amaia; Aubin, Ann (September 2001). "A genomewide screen for autism: strong evidence for linkage to chromosomes 2q, 7q, and 16p". The American Journal of Human Genetics. 69 (3): 570–581. doi:10.1086/323264. PMC   1235486 . PMID   11481586.
  8. Asher, Julian E.; Lamb, Janine A.; Brocklebank, Denise; Cazier, Jean-Baptiste; Maestrini, Elena; Addis, Laura; Sen, Mallika; Baron-Cohen, Simon; Monaco, Anthony P. (13 February 2009). "A Whole-Genome Scan and Fine-Mapping Linkage Study of Auditory-Visual Synesthesia Reveals Evidence of Linkage to Chromosomes 2q24, 5q33, 6p12, and 12p12". The American Journal of Human Genetics. 84 (2): 279–285. doi:10.1016/j.ajhg.2009.01.012. PMC   2668015 . PMID   19200526.
  9. Kadosh, Roi Cohen; Avishai, Henik; Walsh, Vincent (5 February 2009). "Synaesthesia: learned or lost?". Developmental Science. 12 (3): 484–491. doi:10.1111/j.1467-7687.2008.00798.x. PMID   19371373.
  10. Quinn, Christopher C.; Gray, Grace E.; Hockfield, Susan (October 1999). "A family of proteins implicated in axon guidance and outgrowth". Journal of Neurobiology. 41 (1): 158–64. doi:10.1002/(SICI)1097-4695(199910)41:1<158::AID-NEU19>3.0.CO;2-0. PMID   10504203.
  11. Kadosh, Roi Cohen; Avishai, Henik; Walsh, Vincent (5 February 2009). "Synaesthesia: learned or lost?". Developmental Science. 12 (3): 484–491. doi:10.1111/j.1467-7687.2008.00798.x. PMID   19371373.
  12. Tomson, Steffie N.; Avidan, Nili; Lee, Kwanghyuk; Sarma, Anand K.; Tushe, Rejnal; Milewicz, Dianna M.; Bray, Molly; Leal, Suzanne M.; Eagleman, David M. (8 April 2011). "The genetics of colored sequence synesthesia: Suggestive evidence of linkage to 16q and genetic heterogeneity for the condition". Behavioural Brain Research. 223 (1): 48–52. doi:10.1016/j.bbr.2011.03.071. PMC   4075137 . PMID   21504763.
  13. Baron-Cohen, Simon; Burt, Lucy; Smith-Laittan, Fiona; Harrison, John; Bolton, Patrick (1 September 1996). "Synaesthesia: prevalence and familiality". Perception. 25 (9): 1073–1079. doi:10.1068/p251073. PMID   8983047.