Great White Spot

Last updated
Major Storm On Saturn.jpg
Hubble observation of the 1990 GWS
Storm on Saturn.jpg
The 1994 Storm seen by Hubble
Saturn Storm December 2010.jpg
The 2010/2011 GWS in December 2010 seen by Cassini
Saturn Storm.jpg
The GWS in 2011 seen by Cassini

The Great White Spot, also known as Great White Oval, on Saturn, named by analogy to Jupiter's Great Red Spot, are periodic storms that are large enough to be visible from Earth by telescope by their characteristic white appearance. The spots can be several thousands of kilometers wide.

Contents

The Cassini orbiter was able to track the 2010–11 instance of the storm, [1] also known as the Northern Electrostatic Disturbance, because of an increase in radio and plasma interference, or the Great Springtime Storm. [2]

Cassini data has revealed a loss of acetylene in the white clouds, an increase of phosphine, and an unusual temperature drop in the center of the storm. [3] After the visible aspects of the storm subsided, in 2012, a "belch" of heat and ethylene was emitted from two hotspots that merged. [2] [4]

Occurrence

The phenomenon is somewhat periodic at 28.5-year intervals, when Saturn's northern hemisphere tilts most toward the Sun. The following is a list of recorded sightings.

That none were recorded before 1876 is a mystery, in some ways akin to the long observational gap of the Great Red Spot in the 18th and early 19th centuries; the 1876 Great White Spot (GWS) was extremely prominent, being visible in apertures as small as 60 mm. It is not known if the earlier record was simply poor, or if the 1876 GWS was truly a first for the telescopic era. Some believe that neither scenario is likely.[ clarification needed ] [7]

In 1992, Mark Kidger described three significant GWS patterns:

  1. The GWSs alternate in latitude, with one apparition being limited to the North Temperate Zone (NTZ) or higher, and the following being limited to the Equatorial Zone (EZ). For instance, the 1960 GWS was high-latitude, and the 1990 GWS was equatorial.
  2. The high-latitude GWSs recur at a slightly shorter interval than the equatorial GWSs (~27 versus ~30 years).
  3. The high-latitude GWSs tend to be much less prominent than their equatorial counterparts.

Based on these apparent regularities, in 1992 Kidger forecasted (incorrectly, given the 2010–2011 storm) that the next GWS would occur in the North Temperate Zone in 2016, and would probably be less spectacular than the 1990 GWS. [8]

Characteristics and causes

The Great White Spot typically begins as discrete "spots", but then rapidly expands in longitude, as the 1933 and 1990 GWSs did; in fact, the latter eventually lengthened enough to encircle the planet. [9]

Though computer modeling had by the early 1990s suggested these massive atmospheric upwellings were caused by thermal instability, [10] in 2015 two Caltech planetary scientists proposed a more detailed mechanism. [11] The theory is that as Saturn's upper atmosphere undergoes seasonal cooling, it first gets less dense as the heavier water rains out, passes a density minimum, and then gets more dense as the remaining hydrogen and helium continue to cool. Low-density upper-layer gases tend to suppress convection, but high-density upper layers are unstable and cause a thunderstorm when they break into lower layers. The theory is that storms are significantly delayed from the winter solstice due to the time it takes for the very large atmosphere to cool. The team proposes that similar storms are not seen on Jupiter because that planet has less water vapor in its upper atmosphere.

Saturn's rings block the view of the northern hemisphere from Earth during the winter solstice, so historical data on the GWS is unavailable during this season, [12] but the Cassini space probe has been able to observe the whole planet since it arrived shortly after the winter solstice in 2004. [13]

See also

Related Research Articles

<span class="mw-page-title-main">Jupiter</span> Fifth planet from the Sun

Jupiter is the fifth planet from the Sun and the largest in the Solar System. A gas giant, Jupiter's mass is more than two and a half times that of all the other planets in the Solar System combined and slightly less than one one-thousandth the mass of the Sun. Jupiter orbits the Sun at a distance of 5.20 AU (778.5 Gm) with an orbital period of 11.86 years. It is the third brightest natural object in the Earth's night sky after the Moon and Venus and has been observed since prehistoric times. Its name derives from Jupiter, the chief deity of ancient Roman religion.

<span class="mw-page-title-main">Saturn</span> Sixth planet from the Sun

Saturn is the sixth planet from the Sun and the second-largest in the Solar System, after Jupiter. It is a gas giant with an average radius of about nine-and-a-half times that of Earth. It has only one-eighth the average density of Earth, but is over 95 times more massive. Even though Saturn is nearly the size of Jupiter, Saturn has less than one-third of Jupiter's mass. Saturn orbits the Sun at a distance of 9.59 AU (1,434 million km) with an orbital period of 29.45 years.

<span class="mw-page-title-main">Uranus</span> Seventh planet from the Sun

Uranus is the seventh planet from the Sun. It is a gaseous cyan-coloured ice giant. Most of the planet is made of water, ammonia, and methane in a supercritical phase of matter, which in astronomy is called 'ice' or volatiles. The planet's atmosphere has a complex layered cloud structure and has the lowest minimum temperature of 49 K out of all the Solar System's planets. It has a marked axial tilt of 82.23° with a retrograde rotation period of 17 hours and 14 minutes. This means that in an 84-Earth-year orbital period around the Sun, its poles get around 42 years of continuous sunlight, followed by 42 years of continuous darkness.

<span class="mw-page-title-main">Titan (moon)</span> Largest moon of Saturn and second-largest moon in Solar System

Titan is the largest moon of Saturn and the second-largest in the Solar System. It is the only moon known to have an atmosphere denser than the Earth's, and is the only known object in space other than Earth on which clear evidence of stable bodies of surface liquid has been found. Titan is one of the seven gravitationally rounded moons of Saturn and the second-most distant among them. Frequently described as a planet-like moon, Titan is 50% larger than Earth's Moon and 80% more massive. It is the second-largest moon in the Solar System after Jupiter's moon Ganymede, and is larger than Mercury, but only 40% as massive due to Mercury being made of mostly dense iron and rock, while a large portion of Titan is made of less-dense ice.

<span class="mw-page-title-main">Great Red Spot</span> Persistent storm in Jupiters atmosphere

The Great Red Spot is a persistent high-pressure region in the atmosphere of Jupiter, producing an anticyclonic storm that is the largest in the Solar System. It is the most recognizable feature on Jupiter, owing to its red-orange color whose origin is still unknown. Located 22 degrees south of Jupiter's equator, it produces wind-speeds up to 432 km/h (268 mph). Observations from 1665 to 1713 are believed to be of the same storm; if this is correct, it has existed for at least 359 years. It was next observed in September 1831, with 60 recorded observations between then and 1878, when continuous observations began.

<i>Cassini–Huygens</i> Space research mission sent to the Saturnian system

Cassini–Huygens, commonly called Cassini, was a space-research mission by NASA, the European Space Agency (ESA), and the Italian Space Agency (ASI) to send a space probe to study the planet Saturn and its system, including its rings and natural satellites. The Flagship-class robotic spacecraft comprised both NASA's Cassini space probe and ESA's Huygens lander, which landed on Saturn's largest moon, Titan. Cassini was the fourth space probe to visit Saturn and the first to enter its orbit, where it stayed from 2004 to 2017. The two craft took their names from the astronomers Giovanni Cassini and Christiaan Huygens.

<span class="mw-page-title-main">Great Dark Spot</span> Large storm in Neptunes atmosphere

The Great Dark Spot was one of a series of dark spots on Neptune similar in appearance to Jupiter's Great Red Spot. In 1989, GDS-89 was the first Great Dark Spot on Neptune to be observed by NASA's Voyager 2 space probe. Like Jupiter's spot, the Great Dark Spots are anticyclonic storms. However, their interiors are relatively cloud-free, and unlike Jupiter's spot, which has lasted for hundreds of years, their lifetimes appear to be shorter, forming and dissipating once every few years or so. Based on observations taken with Voyager 2 and since then with the Hubble Space Telescope, Neptune appears to spend somewhat more than half its time with a Great Dark Spot. Little is known about the origins, movement, and disappearance of the dark spots observed on the planet since 1989.

Timeline of <i>Cassini–Huygens</i> Timeline of notable events in the history of the Cassini–Huygens mission

This article provides a timeline of the Cassini–Huygens mission. Cassini was a collaboration between the United States' NASA, the European Space Agency ("ESA"), and the Italian Space Agency ("ASI") to send a probe to study the Saturnian system, including the planet, its rings, and its natural satellites. The Flagship-class uncrewed robotic spacecraft comprised both NASA's Cassini probe, and ESA's Huygens lander which was designed to land on Saturn's largest moon, Titan. Cassini was the fourth space probe to visit Saturn and the first to enter its orbit. The craft were named after astronomers Giovanni Cassini and Christiaan Huygens.

<span class="mw-page-title-main">Dragon Storm (astronomy)</span> Thunderstorm on Saturn

The Dragon Storm is a giant thunderstorm located in Saturn's Southern hemisphere, which is labeled as the "storm alley" region. The storm could have a range of 2,000 miles (3,200 km) or more, and can be compared to the electric thunderstorms of Earth. It acquires its energy in the deep layers of Saturn's atmosphere and produces radio waves that reflect during its burst of short static which helped Cassini detect it.

<span class="mw-page-title-main">Small Dark Spot</span> Southern cyclonic storm on the planet Neptune

The Small Dark Spot, sometimes also called Dark Spot 2 or The Wizard's Eye, was an extraterrestrial vortex on the planet Neptune. It was the second largest southern cyclonic storm on the planet in 1989, when Voyager 2 flew by the planet. When the Hubble Space Telescope observed Neptune in 1994, the storm had disappeared.

An extraterrestrial vortex is a vortex that occurs on planets and natural satellites other than Earth that have sufficient atmospheres. Most observed extraterrestrial vortices have been seen in large cyclones, or anticyclones. However, occasional dust storms have been known to produce vortices on Mars and Titan. Various spacecraft missions have recorded evidence of past and present extraterrestrial vortices. The largest extraterrestrial vortices are found on the gas giants, Jupiter and Saturn; and the ice giants, Uranus and Neptune.

<span class="mw-page-title-main">Exploration of Neptune</span> Overview of the exploration of Neptune

Neptune has been directly explored by one space probe, Voyager 2, in 1989. As of 2024, there are no confirmed future missions to visit the Neptunian system, although a tentative Chinese mission has been planned for launch in 2024. NASA, ESA, and independent academic groups have proposed future scientific missions to visit Neptune. Some mission plans are still active, while others have been abandoned or put on hold.

<span class="mw-page-title-main">Atmosphere of Uranus</span> Layer of gases surrounding the planet Uranus

The atmosphere of Uranus is composed primarily of hydrogen and helium. At depth it is significantly enriched in volatiles such as water, ammonia and methane. The opposite is true for the upper atmosphere, which contains very few gases heavier than hydrogen and helium due to its low temperature. Uranus's atmosphere is the coldest of all the planets, with its temperature reaching as low as 49 K.

<span class="mw-page-title-main">Climate of Titan</span> Climate of Titan, the largest moon of Saturn

The climate of Titan, the largest moon of Saturn, is similar in many respects to that of Earth, despite having a far lower surface temperature. Its thick atmosphere, methane rain, and possible cryovolcanism create an analogue, though with different materials, to the climatic changes undergone by Earth during its far shorter year.

<span class="mw-page-title-main">Climate of Uranus</span>

The climate of Uranus is heavily influenced by both its lack of internal heat, which limits atmospheric activity, and by its extreme axial tilt, which induces intense seasonal variation. Uranus's atmosphere is remarkably bland in comparison to the other giant planets which it otherwise closely resembles. When Voyager 2 flew by Uranus in 1986, it observed a total of ten cloud features across the entire planet. Later observations from the ground or by the Hubble Space Telescope made in the 1990s and the 2000s revealed bright clouds in the northern (winter) hemisphere. In 2006 a dark spot similar to the Great Dark Spot on Neptune was detected.

<span class="mw-page-title-main">Neptune</span> Eighth planet from the Sun

Neptune is the eighth and farthest known planet from the Sun. It is the fourth-largest planet in the Solar System by diameter, the third-most-massive planet, and the densest giant planet. It is 17 times the mass of Earth, and slightly more massive than fellow ice giant Uranus. Neptune is denser and physically smaller than Uranus because its greater mass causes more gravitational compression of its atmosphere. Being composed primarily of gases and liquids, it has no well-defined solid surface. The planet orbits the Sun once every 164.8 years at an orbital distance of 30.1 astronomical units. It is named after the Roman god of the sea and has the astronomical symbol , representing Neptune's trident.

<span class="mw-page-title-main">Atmosphere of Jupiter</span> Layer of gases surrounding the planet Jupiter

The atmosphere of Jupiter is the largest planetary atmosphere in the Solar System. It is mostly made of molecular hydrogen and helium in roughly solar proportions; other chemical compounds are present only in small amounts and include methane, ammonia, hydrogen sulfide, and water. Although water is thought to reside deep in the atmosphere, its directly measured concentration is very low. The nitrogen, sulfur, and noble gas abundances in Jupiter's atmosphere exceed solar values by a factor of about three.

<span class="mw-page-title-main">Saturn's hexagon</span> Hexagonal cloud pattern around north pole of Saturn

Saturn's hexagon is a persistent approximately hexagonal cloud pattern around the north pole of the planet Saturn, located at about 78°N. The sides of the hexagon are about 14,500 km (9,000 mi) long, which is about 2,000 km (1,200 mi) longer than the diameter of Earth. The hexagon may be a bit more than 29,000 km (18,000 mi) wide, may be 300 km (190 mi) high, and may be a jet stream made of atmospheric gases moving at 320 km/h (200 mph). It rotates with a period of 10h 39m 24s, the same period as Saturn's radio emissions from its interior. The hexagon does not shift in longitude like other clouds in the visible atmosphere.

<span class="mw-page-title-main">Amy Simon</span> American planetary scientist

Amy Simon is an American planetary scientist at NASA's Goddard Space Flight Center, involved in several missions of the Solar System Exploration Program.

Saturn Electrostatic Discharges are atmospheric lightning events in convective weather storms on Saturn that produce high frequency (HF) radio emissions (1-40 MHz). Terrestrial lighting events on Earth, in comparison, occur in the very low frequency (VLF) radio band, between 3 Hz and 30 kHz. This makes SED signals at least 10,000 times stronger. While first discovered by NASA's Voyager 1 mission, the scientific community has gained further understanding through the following Voyager 2 and Cassini missions in conjunction with ground-based observation and data gathering methods.

References

  1. 1 2 Cassini Helps Solve Saturn’s Mysterious Great White Spots | Space Exploration | Sci-News.com
  2. 1 2 Mann, Adam. "Saturn Storm Creates Largest and Hottest Vortex Ever Seen in Solar System". Wired.
  3. Krishnan, Shweta (May 20, 2011). "Dissecting Saturn's Big Storm". Sky & Telescope . Archived from the original on September 10, 2012. Retrieved May 22, 2011.
  4. NASA: Rare, enormous gas storm detected on Saturn - CNN.com
  5. HubbleSite - NewsCenter - Hubble Observes A New Saturn Storm (12/21/1994) – Release Text
  6. "Vast Storm Rampages Across Saturn: Discovery News". Archived from the original on 2011-09-03. Retrieved 2011-01-08.
  7. Kidger (1992) p. 179
  8. Kidger (1992) p. 180
  9. Kidger (1992) p. 187-189
  10. Kidger (1992) p. 211-212
  11. Explaining Saturn’s Great White Spots | Caltech
  12. Kidger (1992) p. 213-214
  13. Cassini Solstice Mission: Introduction archive

Notes