Guitar pedalboard

Last updated
Guthrie Govan's Aristocrats pedalboard (2012 U.S. tour) Guthrie Govan's Aristocrats pedalboard (U.S. tour).jpg
Guthrie Govan's Aristocrats pedalboard (2012 U.S. tour)

A guitar pedalboard is a flat board or panel that serves as a container, patch bay, and power supply for effects pedals for the electric guitar. Some pedalboards contain their own transformer and power cables to power multiple pedals. Pedalboards help the player manage multiple pedals. The entire pedalboard can be packed up and transported to the next location without disassembly.

Contents

Pedalboards often have a cover that protects the effects pedals during transportation. There are many varieties of pedalboard cases, including homemade do it yourself pedalboard cases, store-bought pedalboard cases, and custom-made pedalboard cases. Hard shell pedalboard-cases have foam padding, reinforced corners, and locking latches. During performance, with the lid removed, the bottom of the case is a pedalboard. Most pedalboards have a flat surface where pedals and their power supplies attach using hook-and-loop fasteners or other techniques, and often have a removable lid or padding to protect the pedals when not in use. Some pedalboards have handles or wheels to facilitate transportation. [1]

Fig. 1: This picture of a custom-made wooden pedalboard shows the "audience" view of a pedalboard, with the pedals arrayed towards the bassist. Pedalboard-3.jpg
Fig. 1: This picture of a custom-made wooden pedalboard shows the "audience" view of a pedalboard, with the pedals arrayed towards the bassist.

Pedal power supply

Most effects pedals are powered by varying levels of DC voltage, depending on the manufacturer. Possible voltages include 9V, 12V, 15V, 18V, 24V, and 40V, though 9V center negative is most common. Some effects pedals accept a range of voltages, producing different effects. Guitar players can experiment with varying voltages to generate different sounds.

DC power can be generated by batteries, an AC/DC power supply, or a rechargeable battery. Each has its own advantages and disadvantages.

Using individual batteries is fine for occasional players, because they don't have to worry about the cost of replacement batteries or changes in sound as batteries get tired. Battery life varies depending on the pedal's power draw. Professional players normally replace all batteries with new ones before a show.

A DC power supply has higher initial cost, however, one must pay attention to noise from ground loops, switched-mode power supply's switching, and power line hum. Noise gates can be used to eliminate noise when not playing by suppressing any signal below a certain volume threshold, but can't actually remove noise from the desired audio signal while playing. Switched-mode power supply noise can be reduced with low-pass filtering and a regulator, and by ensuring the switching frequency is significantly higher than the ~20 kHz upper limit of human hearing. Power line hum can be reduced by increasing the distance between the power supply transformers and the pedals or by shielding the pedals.

Additionally, some power supplies galvanically isolate each pedal's voltage supply, which eliminates ground loops between each pedal and whatever it connects to.

Fig. 2: A metal pedalboard with wheels using a single rechargeable effects pedal battery Pedalboard-4.jpg
Fig. 2: A metal pedalboard with wheels using a single rechargeable effects pedal battery

Some power supplies have a powerful rechargeable battery can be used to drive all the pedals, and a battery charger to recharge the battery. There are batteries on the market that can power over 20 effects pedals for eight hours on a single charge.

Using a rechargeable effects pedal battery or AC/DC power supply in conjunction with a “pedalboard suitcase” reduces setup time prior to a show.

See also

Related Research Articles

<span class="mw-page-title-main">Effects unit</span> Electronic device that alters audio

An effects unit, effects processor, or effects pedal is an electronic device that alters the sound of a musical instrument or other audio source through audio signal processing.

<span class="mw-page-title-main">Uninterruptible power supply</span> Electrical device that uses batteries to prevent any interruption of power flow

An uninterruptible power supply (UPS) or uninterruptible power source is a type of continual power system that provides automated backup electric power to a load when the input power source or mains power fails. A UPS differs from a traditional auxiliary/emergency power system or standby generator in that it will provide near-instantaneous protection from input power interruptions by switching to energy stored in battery packs, supercapacitors or flywheels. The on-battery run-times of most UPSs are relatively short but sufficient to "buy time" for initiating a standby power source or properly shutting down the protected equipment. Almost all UPSs also contain integrated surge protection to shield the output appliances from voltage spikes.

<span class="mw-page-title-main">Direct current</span> Unidirectional flow of electric charge

Direct current (DC) is one-directional flow of electric charge. An electrochemical cell is a prime example of DC power. Direct current may flow through a conductor such as a wire, but can also flow through semiconductors, insulators, or even through a vacuum as in electron or ion beams. The electric current flows in a constant direction, distinguishing it from alternating current (AC). A term formerly used for this type of current was galvanic current.

<span class="mw-page-title-main">Power supply</span> Electronic device that converts or regulates electric energy and supplies it to a load

A power supply is an electrical device that supplies electric power to an electrical load. The main purpose of a power supply is to convert electric current from a source to the correct voltage, current, and frequency to power the load. As a result, power supplies are sometimes referred to as electric power converters. Some power supplies are separate standalone pieces of equipment, while others are built into the load appliances that they power. Examples of the latter include power supplies found in desktop computers and consumer electronics devices. Other functions that power supplies may perform include limiting the current drawn by the load to safe levels, shutting off the current in the event of an electrical fault, power conditioning to prevent electronic noise or voltage surges on the input from reaching the load, power-factor correction, and storing energy so it can continue to power the load in the event of a temporary interruption in the source power.

<span class="mw-page-title-main">Power inverter</span> Device that changes direct current (DC) to alternating current (AC)

A power inverter, inverter, or invertor is a power electronic device or circuitry that changes direct current (DC) to alternating current (AC). The resulting AC frequency obtained depends on the particular device employed. Inverters do the opposite of rectifiers which were originally large electromechanical devices converting AC to DC.

<span class="mw-page-title-main">Switched-mode power supply</span> Power supply with switching regulator

A switched-mode power supply (SMPS), also called switching-mode power supply, switch-mode power supply, switched power supply, or simply switcher, is an electronic power supply that incorporates a switching regulator to convert electrical power efficiently.

A DC-to-DC converter is an electronic circuit or electromechanical device that converts a source of direct current (DC) from one voltage level to another. It is a type of electric power converter. Power levels range from very low to very high.

<span class="mw-page-title-main">Voltage regulator</span> System designed to maintain a constant voltage

A voltage regulator is a system designed to automatically maintain a constant voltage. It may use a simple feed-forward design or may include negative feedback. It may use an electromechanical mechanism, or electronic components. Depending on the design, it may be used to regulate one or more AC or DC voltages.

In an electrical system, a ground loop or earth loop occurs when two points of a circuit are intended to have the same ground reference potential but instead have a different potential between them. This is typically caused when enough current is flowing in the connection between the two ground points to produce a voltage drop and cause two points to be at different potentials. Current may be produced in a circular ground connection by electromagnetic induction.

<span class="mw-page-title-main">AC adapter</span> Type of external power supply

An AC adapter or AC/DC adapter is a type of external power supply, often enclosed in a case similar to an AC plug. AC adapters deliver electric power to devices that lack internal components to draw voltage and power from mains power themselves. The internal circuitry of an external power supply is often very similar to the design that would be used for a built-in or internal supply.

<span class="mw-page-title-main">Inrush current</span> Maximal instantaneous input current drawn by an electrical device when first turned on

Inrush current, input surge current, or switch-on surge is the maximal instantaneous input current drawn by an electrical device when first turned on. Alternating-current electric motors and transformers may draw several times their normal full-load current when first energized, for a few cycles of the input waveform. Power converters also often have inrush currents much higher than their steady-state currents, due to the charging current of the input capacitance. The selection of over-current-protection devices such as fuses and circuit breakers is made more complicated when high inrush currents must be tolerated. The over-current protection must react quickly to overload or short-circuit faults but must not interrupt the circuit when the inrush current flows.

<span class="mw-page-title-main">Electronic component</span> Discrete device in an electronic system

An electronic component is any basic discrete electronic device or physical entity part of an electronic system used to affect electrons or their associated fields. Electronic components are mostly industrial products, available in a singular form and are not to be confused with electrical elements, which are conceptual abstractions representing idealized electronic components and elements. A datasheet for an electronic component is a technical document that provides detailed information about the component's specifications, characteristics, and performance.

Mains hum, electric hum, cycle hum, or power line hum is a sound associated with alternating current which is twice the frequency of the mains electricity. The fundamental frequency of this sound is usually double that of fundamental 50/60 Hz, i.e. 100/120 Hz, depending on the local power-line frequency. The sound often has heavy harmonic content above 50/60 Hz. Because of the presence of mains current in mains-powered audio equipment as well as ubiquitous AC electromagnetic fields from nearby appliances and wiring, 50/60 Hz electrical noise can get into audio systems, and is heard as mains hum from their speakers. Mains hum may also be heard coming from powerful electric power grid equipment such as utility transformers, caused by mechanical vibrations induced by magnetostriction in magnetic core. Onboard aircraft the frequency heard is often higher pitched, due to the use of 400 Hz AC power in these settings because 400 Hz transformers are much smaller and lighter.

<span class="mw-page-title-main">Battery charger</span> Device used to provide electricity

A battery charger, recharger, or simply charger, is a device that stores energy in a battery by running an electric current through it. The charging protocol depends on the size and type of the battery being charged. Some battery types have high tolerance for overcharging and can be recharged by connection to a constant voltage source or a constant current source, depending on battery type.

<span class="mw-page-title-main">Flyback converter</span> Type of voltage converter circuit

The flyback converter is used in both AC/DC, and DC/DC conversion with galvanic isolation between the input and any outputs. The flyback converter is a buck-boost converter with the inductor split to form a transformer, so that the voltage ratios are multiplied with an additional advantage of isolation.

A voltage converter is an electric power converter which changes the voltage of an electrical power source. It may be combined with other components to create a power supply.

<span class="mw-page-title-main">Distortion (music)</span> Type of electronic audio manipulation

Distortion and overdrive are forms of audio signal processing used to alter the sound of amplified electric musical instruments, usually by increasing their gain, producing a "fuzzy", "growling", or "gritty" tone. Distortion is most commonly used with the electric guitar, but may also be used with other electric instruments such as electric bass, electric piano, synthesizer and Hammond organ. Guitarists playing electric blues originally obtained an overdriven sound by turning up their vacuum tube-powered guitar amplifiers to high volumes, which caused the signal to distort. While overdriven tube amps are still used to obtain overdrive, especially in genres like blues and rockabilly, a number of other ways to produce distortion have been developed since the 1960s, such as distortion effect pedals. The growling tone of a distorted electric guitar is a key part of many genres, including blues and many rock music genres, notably hard rock, punk rock, hardcore punk, acid rock, and heavy metal music, while the use of distorted bass has been essential in a genre of hip hop music and alternative hip hop known as "SoundCloud rap".

<span class="mw-page-title-main">Single-ended primary-inductor converter</span> Electrical device

The single-ended primary-inductor converter (SEPIC) is a type of DC/DC converter that allows the electrical potential (voltage) at its output to be greater than, less than, or equal to that at its input. The output of the SEPIC is controlled by the duty cycle of the control switch (S1).

<span class="mw-page-title-main">Vibrator (electronic)</span> Electromechanical device

A vibrator is an electromechanical device that takes a DC electrical supply and converts it into pulses that can be fed into a transformer. It is similar in purpose to the solid-state power inverter.

A regulated power supply is an embedded circuit; it converts unregulated AC into a constant DC. With the help of a rectifier it converts AC supply into DC. Its function is to supply a stable voltage, to a circuit or device that must be operated within certain power supply limits. The output from the regulated power supply may be alternating or unidirectional, but is nearly always DC. The type of stabilization used may be restricted to ensuring that the output remains within certain limits under various load conditions, or it may also include compensation for variations in its own supply source. The latter is much more common today.

References

  1. Cleveland, Barry. "Pedalboards: How to Build the Perfect System from Start to Finish". GuitarPlayer.com. Future US Inc. Retrieved 16 December 2020.