Hosted payload

Last updated

A hosted payload is a module attached to a commercial satellite with communications circuitry that operates independently of the main spacecraft but which shares the satellite's power supply and transponders. The concept has been also been referred to as "piggybacking" or "hitchhiking." [1] [2]

Contents

Description

Hosted payloads are used most often by government agencies [ who? ] seeking to have communications capability in orbit without having to pay the cost of building and launching an entire government-owned satellite.[ citation needed ] For example, within the United States, the Department of Defense has used three commercially hosted payloads since 2009. [3] Using a hosted payload on a commercial satellite can reduce both the expense and time required to get communications and other technologies into space. [4]

However, because some government agencies desire to own and control entire satellite platforms, hosted payloads have not been widely accepted by government space planners, despite the fact that a large proportion of government satellite communications is over commercially owned and operated satellites. For example, according to Space Commerce, over 80% of all U.S. government and military satellite communications goes through commercial services.[ citation needed ] Hosted payloads give government agencies[ clarification needed ] the ability to own and control a portion of a satellite's capacity. In 2007, the US Department of Defense projected that satellite demand for the next 10–13 years would increase much more rapidly than the government could build and launch its own satellite systems, making hosted payloads on commercial satellites an attractive alternative.[ citation needed ]

Hosted payloads can support a variety of missions. These include Space Situational Awareness (SSA) such as collision avoidance, debris monitoring, nuclear detection and still imagery; and data collection for hyper-spectral sounding, ocean color analysis, ozone mapping, and weather tracking; as well as communications; and research and development. [5]

A hosted payload's schedule usually takes from start date to launch around 30 months. This launch time is actually an advantage compared to the longer launch date of typical government satellite programs. Hosted Payload's also allow the government a way to reduce many risks when it comes to program funding, launch delays and operational concerns.[ citation needed ]

As of March 2010, eighteen commercial satellites that had the capability to carry U.S. government piggyback payloads have been placed into production, but only one is expected to host a payload because the government has yet to have a policy on the matter. [6]

The role of hosted payloads in the government has been increasing over the years. In 2007, Department of Defense's projected satellite demand for the next 10–13 years shows a rise in satellite demand but a gap in actual capability. Hosted Payloads is a potential answer to meet the demand of satellites through their ability to provide rapid and dependable access into space. [7] [ full citation needed ]

In December 2010, mobile satellite provider, Inmarsat, announced plans to construct three Ka-band satellites to provide bandwidth to commercial military customers. One of the Global Xpress satellites, to be built by Boeing Defense, Space & Security, will carry a hosted payload built by Inmarsat. It is expected to be leased by a customer of the U.S. Department of Defense. [8] [ full citation needed ]

A particularly promising area of development for hosted payloads is in earth observation missions. There are countless environmental monitoring missions, both old and new, which should be launched in the coming years.[ citation needed ]

IRIS

An example of such was launched in November 2009 called the Intelsat 14. The Internet Routing in Space (IRIS) program, according to Intelsat, its provider of fixed satellites, was a "technology demonstrator" hosted payload. According to Intelsat's press release and Steve Boutelle, Vice President, Cisco Systems Global Government Solutions Group, the IRIS payload supports network services for voice, video and data communications, enabling U.S. military units and allied forces to communicate with one another using Internet Protocol (IP) and existing ground equipment. In January 2010, Cisco completed the first-ever software upgrade of an IP router aboard a commercial satellite while in orbit.

Australian Defence Force/ ILS

International Launch Services teamed up with Intelsat to launch the Intelsat 22 satellite for Intelsat on a Proton rocket. In April 2009, Intelsat announced an expansion agreement for hosted payload services with the Australian Defence Force (ADF). The Intelsat 22 satellite was built by Boeing Space and Intelligence Systems and was launched in the first half of 2012. [9] The ADF purchased the remainder of the specialized ultra-high frequency (UHF) communications payload that Intelsat is integrating within its Intelsat 22 satellite. The Intelsat 22 satellite was promoted to provide optimal coverage for commercial networks, mobility and defense-related applications.

United States

With budget concerns facing the US space program, hosted payloads were examined in 2011 as a more cost-effective alternative to traditional space launches into orbit. [10] This led to development of knowledge bases to further promote hosted payloads by the space industry.

An example of a hosted payload is the U.S. Coast Guard's Nationwide Automatic Identification System (NAIS) Project. According to the Office of Space Commerce, NAIS is designed to enhance the current Automatic Identification System (AIS), which monitors vessel traffic for maritime domain awareness. The payload is testing the feasibility and effectiveness of AIS message reception and reporting from space for ship tracking and other navigational activities. The Coast Guard paid a commercial satellite operator (Orbcomm) to develop and integrate the NAIS demonstration payload on one commercial satellite. Sensing a business opportunity, the company used its own funds to add the same capability to five additional satellites. Other customers of a satellite-based AIS data service could include the Navy, NOAA, insurance firms, and trucking companies.

The U.S. Air Force's Commercially Hosted Infrared Payload (CHIRP) flight demonstration program is a wide field-of-view, passive infrared sensor on a commercial GEO (SES-2) launched by SES in 2011. The experiment supports an infrared sensor system development and is essential to reducing technology risk for the Third Generation Infrared Surveillance (3GIRS) system. [11] The Air Force is expected save costs by flying this mission via hosted payload. According to the Office of Space Commerce, it would cost approximately $500 million to launch a dedicated free flyer to satisfy 100% of the technical questions associated with the experiment. The hosted payload ended up costing $65 million and should satisfy 80% of the technical questions. [12]

In 2013, NASA selected Global-scale Observations of the Limb and Disk (GOLD) as an Explorer Mission of Opportunity. GOLD was launched in 2018 as a hosted payload on the SES-14 communications satellite manufactured by Airbus Defence and Space. GOLD is a far ultraviolet (FUV) imaging spectrometer which studies the Earth's upper atmosphere. [13] [14]

SES's Astra 5B and SES-5 satellites (launched March 2014 and July 2012, respectively) carry European Geostationary Navigation Overlay Service (EGNOS) payloads, a supplementary network to the GPS and GLONASS navigation systems. [15] [16] [17]

The Federal Aviation Administration (FAA) has employed a hosted payload approach to set its own Wide Area Augmentation System (WAAS) payloads on a succession of commercial geosynchronous satellites, such as the SES-15 satellite launched in May 2017. [18] [19]

Related Research Articles

<span class="mw-page-title-main">Ariane 5</span> Heavy-lift space launch vehicle

Ariane 5 is a European heavy-lift space launch vehicle developed and operated by Arianespace for the European Space Agency (ESA). It is launched from the Centre Spatial Guyanais (CSG) in French Guiana. It has been used to deliver payloads into geostationary transfer orbit (GTO) or low Earth orbit (LEO). The launch vehicle had a streak of 82 consecutive successful launches between 9 April 2003 and 12 December 2017. Since 2014, Ariane 6, a direct successor system, is in development.

<span class="mw-page-title-main">Intelsat</span> Luxembourgish communications satellite services provider

Intelsat S.A. is a multinational satellite services provider with corporate headquarters in Luxembourg and administrative headquarters in Tysons Corner, Virginia, United States. Originally formed as International Telecommunications Satellite Organization, from 1964 to 2001, it was an intergovernmental consortium owning and managing a constellation of communications satellites providing international telecommunications and broadcast services.

Iridium Communications Inc. is a publicly traded American company headquartered in McLean, Virginia. Iridium operates the Iridium satellite constellation, a system of 66 active satellites and 9 in-orbit spares used for worldwide voice and data communication from hand-held satellite phones and other transceiver units. The nearly polar orbit and communication between satellites via inter-satellite links provide global service availability.

<span class="mw-page-title-main">Proton (rocket family)</span> Russian (formerly Soviet) rocket family

Proton is an expendable launch system used for both commercial and Russian government space launches. The first Proton rocket was launched in 1965. Modern versions of the launch system are still in use as of 2022, making it one of the most successful heavy boosters in the history of spaceflight. The components of all Protons are manufactured at the Khrunichev State Research and Production Space Center factory in Moscow and Chemical Automatics Design Bureau in Voronezh, then transported to the Baikonur Cosmodrome, where they are assembled at Site 91 to form the launch vehicle. Following payload integration, the rocket is then brought to the launch pad horizontally by rail, and raised into vertical position for launch.

<span class="mw-page-title-main">Military satellite</span>

A military satellite is an artificial satellite used for a military purpose. The most common missions are intelligence gathering, navigation and military communications.

Orbital Sciences Corporation was an American company specializing in the design, manufacture, and launch of small- and medium- class space and launch vehicle systems for commercial, military and other government customers. In 2014, Orbital merged with Alliant Techsystems to create a new company called Orbital ATK, Inc., which in turn was purchased by Northrop Grumman in 2018. The remnants of the former Orbital Sciences Corporation today are a subsidiary of Northrop Grumman, known as Northrop Grumman Innovation Systems.

<span class="mw-page-title-main">SES S.A.</span> Communications satellite owner and operator

SES S.A. is a Luxembourgish-French satellite telecommunications network provider supplying video and data connectivity worldwide to broadcasters, content and internet service providers, mobile and fixed network operators, governments and institutions.

ORBCOMM is an American company that offers industrial Internet of things (IoT) and machine to machine (M2M) communications hardware, software and services designed to track, monitor, and control fixed and mobile assets in markets including transportation, heavy equipment, maritime, oil and gas, utilities and government. The company provides hardware devices, modems, web applications, and data services delivered over multiple satellite and cellular networks.

<span class="mw-page-title-main">Commercial use of space</span> General space-related commerce

Commercial use of space is the provision of goods or services of commercial value by using equipment sent into Earth orbit or outer space. This phenomenon – aka Space Economy – is accelerating cross-sector innovation processes combining the most advanced space and digital technologies to develop a broad portfolio of space-based services. The use of space technologies and of the data they collect, combined with the most advanced enabling digital technologies is generating a multitude of business opportunities that include the development of new products and services all the way to the creation of new business models, and the reconfiguration of value networks and relationships between companies. If well leveraged such technology and business opportunities can contribute to the creation of tangible and intangible value, through new forms and sources of revenue, operating efficiency and the start of new projects leading to multidimensional positive impact. Examples of the commercial use of space include satellite navigation, satellite television and commercial satellite imagery. Operators of such services typically contract the manufacturing of satellites and their launch to private or public companies, which form an integral part of the space economy. Some commercial ventures have long-term plans to exploit natural resources originating outside Earth, for example asteroid mining. Space tourism, currently an exceptional activity, could also be an area of future growth, as new businesses strive to reduce the costs and risks of human spaceflight.

<span class="mw-page-title-main">SpaceQuest</span>

SpaceQuest, Ltd. is a spacecraft components and engineering company located in Fairfax, Virginia, which focuses on the operations of small satellites.

<span class="mw-page-title-main">Proton-M</span> Russian heavy lift launcher, hypergolic fuel

The Proton-M, (Протон-М) GRAU index 8K82M or 8K82KM, is an expendable Russian heavy-lift launch vehicle derived from the Soviet-developed Proton. It is built by Khrunichev, and launched from sites 81 and 200 at the Baikonur Cosmodrome in Kazakhstan. Commercial launches are marketed by International Launch Services (ILS), and generally use Site 200/39. The first Proton-M launch occurred on 7 April 2001.

<span class="mw-page-title-main">Advanced Extremely High Frequency</span> Series of American military satellites

Advanced Extremely High Frequency (AEHF) is a constellation of communications satellites operated by the United States Space Force. They are used to relay secure communications for the United States Armed Forces, the British Armed Forces, the Canadian Armed Forces, the Netherlands Armed Forces and the Australian Defence Force. The system consists of six satellites in geostationary orbits. The final satellite was launched on 26 March 2020. AEHF is backward compatible with, and replaces, the older Milstar system and will operate at 44 GHz uplink and 20 GHz downlink. The AEHF system is a joint service communications system that provides survivable, global, secure, protected, and jam-resistant communications for high-priority military ground, sea and air assets.

Marisat satellites were the first maritime telecommunications satellites and were designed to provide dependable telecommunications for commercial shipping and the U.S. Navy from stable geosynchronous orbital locations over the three major ocean regions. The three Marisat satellites, F1, F2, and F3, were built by Hughes Aircraft Corporation (HAC) for COMSAT Corporation starting in 1973. The satellites were designed to provide maritime telecommunications services in three large ocean areas, the Atlantic Ocean, the Pacific Ocean, and the Indian Ocean, and were located at 72.5° East longitude, 176.5° E, and 345° E in the geosynchronous orbital arc. The three-satellite Marisat system served as the initial INMARSAT constellation.

<span class="mw-page-title-main">Iridium satellite constellation</span> Satellite constellation providing voice and data coverage

The Iridium satellite constellation provides L band voice and data information coverage to satellite phones, pagers and integrated transceivers over the entire surface of Earth. Iridium Communications owns and operates the constellation, additionally selling equipment and access to its services. It was conceived by Bary Bertiger, Raymond J. Leopold and Ken Peterson in late 1987 and then developed by Motorola on a fixed-price contract from July 29, 1993, to November 1, 1998, when the system became operational and commercially available.

<span class="mw-page-title-main">Internet Routing in Space</span>

Internet Routing in Space (IRIS) was a program to build a radiation-tolerant IP router created by Cisco Systems for satellite and related spacecraft. It was a follow-on from Cisco's earlier CLEO router in space on the UK-DMC satellite. The Cisco Space Router was launched to geostationary orbit on board Intelsat 14 (IS-14), a spacecraft built by Space Systems/Loral for satellite operator Intelsat, in November 2009. IRIS was evaluated by the United States Department of Defense by way of a JCTD. The Space Router runs Cisco IOS software and also contains an onboard Software-defined radio running satellite modem waveforms. The United States Department of Defense used the JCTD to evaluate the reduced latency, improved throughput and increased flexibility provided by the Space Router.

<span class="mw-page-title-main">Galaxy 15</span> American telecommunications satellite

Galaxy 15 is an American telecommunications satellite which is owned by Intelsat. It was launched for and originally operated by PanAmSat, and was subsequently transferred to Intelsat when the two companies merged in 2006. It was originally positioned in geostationary orbit at a longitude of 133° West, from where it was used to provide communication services to North America.

Space Infrastructure Servicing (SIS) is a spacecraft concept being developed by Canadian aerospace firm MDA to operate as a small-scale in-space refueling depot for communication satellites in geosynchronous orbit.

<span class="mw-page-title-main">Space tug</span> Spacecraft used to transfer cargo from one orbit to another

A space tug is a type of spacecraft used to transfer spaceborne cargo from one orbit to another orbit with different energy characteristics. An example would be moving a spacecraft from a low Earth orbit (LEO) to a higher-energy orbit like a geostationary transfer orbit, a lunar transfer, or an escape trajectory.

SES-2 is a communications satellite operated by SES World Skies. It was launched alongside the Arabsat-5C satellite.

SES-5 is a commercial geostationary communication satellite operated by SES S.A. It was launched on 9 July 2012. The launch was arranged by International Launch Services (ILS).

References

  1. "Hosted Payloads – Office of Space Commerce" . Retrieved 2022-12-20.
  2. "What is a Hosted Payload?". Iridium Satellite Communications. 2018-08-21. Retrieved 2022-12-20.
  3. Office, U. S. Government Accountability. "Military Space Systems: DOD's Use of Commercial Satellites to Host Defense Payloads Would Benefit from Centralizing Data". www.gao.gov. Retrieved 2022-12-20.
  4. Meyerson, Hilary (2020-12-04). "Hosted Payloads Hitchhike to Space with Spaceflight's Sherpa OTVs". Spaceflight. Retrieved 2022-09-30.
  5. "Developments in hosted payloads" (PDF). Global Military Communications Magazine. 2018. Retrieved 2022-09-30.
  6. Space News
  7. "Government Solutions".
  8. Space News
  9. "DoD, Australia Sharing Hosted UHF Payload Space On Intelsat 22 Satellite". Defense Daily. 2012-03-30. Retrieved 2022-10-27.
  10. Andy Pasztor and Nathan Hodge (February 11, 2011). "Space Projects of Pentagon to Get Boost". The Wall Street Journal. Retrieved August 22, 2013.
  11. U.S. Air Force, SAIC, SES, and Orbital launch Commercially Hosted Infrared Payload Sensor infrared staring system aboard SES-2 satellite Military & Aerospace Electronics September 24, 2011. Accessed May 29, 2018
  12. "Iridium NEXT | Hosted Payloads". www.iridium.com. Archived from the original on 2010-03-04.
  13. GOLD NASA mission website. Accessed May 29, 2018
  14. SES-14 - Accompanying the opportunities in high growth markets in the Americas and North Atlantic SES. Accessed May 29, 2018
  15. ASTRA 5B's mission SES website. Accessed April 28, 2018
  16. SES-5 GEO Satellite Ensures EGNOS Services for the Long Term European Global Navigation Satellite Systems Agency September 4, 2015. Accessed May 29, 2018
  17. EGNOS on SES website SES. Accessed May 29, 2018
  18. Leidos bests Raytheon for FAA hosted payload contract Space News April 9, 2018. Accessed May 29, 2018
  19. New WAAS GEO Satellite Launch Federal Aviation Administration SatNavNews newsletter Spring 2017. Accessed May 29, 2018