Hot metal gas forming

Last updated

Hot metal gas forming (HMGF) is a method of die forming in which a metal tube is heated to a pliable state, near to but below its melting point, then pressurized internally by a gas in order to form the tube outward into the shape defined by an enclosing die cavity. The high temperatures allow the metal to elongate, or stretch, to much greater degrees without rupture than are possible in previously utilized cold and warm forming methods. In addition, the metal can be formed into finer details and requires less overall forming force than traditional methods.

Contents

History and comparison with previous techniques

HMGF is an evolution in the cost effectiveness and applicability of several existing commercial processes: superplastic forming, hot blow forming, [1] and hydroforming.

Complex tubes can be made from multiple sheet components formed and welded together, but this adds unnecessary cost and creates quality concerns at the joints. Hydroforming uses liquid under extreme pressures to form metal tubes. It was developed for the plumbing industry and by 1990 achieved production efficiencies suited for high volume autos. Typically hydroforming is done at ambient temperatures, and limits the forming elongation of metals to 8–12% diameter increase for aluminum, and 25–40% for steel. This limits the part shape complexity that can be produced. In addition, the workcenters and tooling can be large and expensive because of the internal fluid pressures required to form ambient tubes. HMGF is able to form tubes with larger shape complexity in only one forming step and generally at a lower internal pressure than in conventional tube hydroforming.

Blow forming started with glass long ago, and is now a widespread method for forming plastic into hollow structures. Again, the heated material properties provide for many processing advantages. Warm forming has been the subject of extensive research in the past decades. It is defined as forming above ambient but below the recrystallization temperature of an alloy, [2] and using hydroform principles, can be done on tubes. Temperatures are typically limited due to safety concerns surrounding the heated forming fluids. [3] At these temperatures, cycle times may still be relatively long, and elongations still do not approach that of hot forming. [4]

Superplastic forming is often applied in the aerospace industry, but it requires the use of very fine grain metal alloys, deformed up to very large strain values, but at a very low strain rate. HMGF is therefore potentially faster than superplastic forming.

As a natural evolution, the need for HMGF created research starting in the 1990s. Fast cycle times, inexpensive tooling and machinery resulting from pressures an order of magnitude lower than hydroforming, and extreme forming ratios due to high temperature forming create a compelling business case for high volume low cost manufacturing.

In 1999, development of the HMGF techniques began as an Advanced Technology Program (ATP) project funded by the US National Institute of Standards and Technology (NIST). [5] This project completed in 1993 and research showed up to 150% expansion ratios for aluminum and 50% with steel were possible, with further expansion capabilities by use of end feeding of material to minimize wall thinning. [1]

In order to keep pace with the US research, a European project was funded by the Research Fund for Coal and Steel (RFCS). Starting in July 2004, with a duration of 3 years, this project further investigated the HMGF process. By 2007, the consortium of European research and commercial entities proved concepts of simpler heating and die construction, and while focusing on the more demanding steel alloys, illustrated free deformation of 140% by use of end feeding to control wall thinning and delay rupture. [6] The method used in these experiments is patented under U.S. patent 7,285,761 .[ citation needed ]

Also in Europe, parallel research yielded an innovative approach to the concept. By 2006, the HEATform method of hot metal gas forming showed evidence of unique metal shapes that had "historically only been possible in the domain of glass blowing and blow molded parts" with aluminum forming in excess of 270% expansion ratio at a production intended cycle time of 20 seconds. Citing that hardening and subsequent breakage will limit forming of the aluminum alloy below 460 °C (860 °F), the best flow behavior was observed at 550 °C (1,022 °F). This is significantly higher than the capabilities of warm liquid or warm gas pressure forming. The HEATform techniques of end feeding control achieved uniform wall thickness up to 300% strain values. [7]

While significant research into material compatibility and predictive analysis techniques is ongoing, hot metal gas forming has been commercialized by at least one company who is providing hot expansion coupled with material end feeding.

Applications

Typical applications are in the automotive and aerospace industries where the precursor technology of hydroforming is well known. Other applications include sports equipment and furniture. The multi-material capability are used in decorative workpieces and plumbing fixtures.[ citation needed ]

Materials

The HMGF process is compatible with almost any metal.[ citation needed ] The most significant benefit of HMGF is that cold form resistant materials become viable for complex forming. Often, alloys are enhanced with expensive materials to enable cold forming and increase machinability, however with HMFG a less expensive alloy can be used, which reduces piece prices. One example is the use of ferritic stainless steels, like the 1.4512 alloy for exhaust components. Typically, the more expensive austenitic stainless is chosen, like the 1.4301 alloy, for parts requiring complex forming due to its 40% advantage in ambient formability (38.5% vs. 27.4% typical A%). [8] Hardenable metal alloys (e.g. boron steels) can be used in HMGF. In this case the die can be used not only as a shaping tool, but also as a tempering tool, so that the final hardness of the formed tube after forming and cooling is increased. The process is often called "press hardening" in this case.

Notes

  1. 1 2 Bill Dykstra (2001). “Hot Metal Gas Forming for Manufacturing Vehicle Structural Components”, MetalForming
  2. "Hot versus Cold and Warm Forming and in Between - Mechanical Engineer". Archived from the original on 2009-06-06. Retrieved 2009-07-27.
  3. xiHarry Singh (2006) “HEATforming: A new Freedom in Forming Tubular Structures” (conference report); 4th Annual North American – Hydroforming Conference & Exhibition – Sept. 2006
  4. Yingyout Aue‐u‐lan et al. (2006), "Warm forming magnesium, aluminum tubes", The Fabricator, 2006‐3‐10, retrieved 2009‐12‐6 from thefabricator.com
  5. ATP Project Brief, http://jazz.nist.gov/atpcf/prjbriefs/prjbrief.cfm?ProjectNumber=98‐01‐0168 Archived 2016-03-04 at the Wayback Machine
  6. Zarazua, J.I.; Vadillo, L.; Mangas, A.; Santos, M.; Gutierrez, M.; Gonzalez, B.; Testani, C.; Argentero, S. (May 2007), "Alternative Hydroforming Process for High Strength and Stainless Steel Tubes in the Automotive Industry IDDRG2007" (PDF), IDDRG 2007 International Conference, Győr, Hungary, archived from the original (PDF) on 2011-07-28.
  7. Harry Singh (2006) “HEATforming: A new Freedom in Forming Tubular Structures” (conference report); 4th Annual North American – Hydroforming Conference & Exhibition – Sept. 2006
  8. Vadillo, L.; Santos, M. T.; Gutierrez, M.A.; Pérez, I.; González, B.; Uthaisangsuk, V. (May 2007), "Simulation and Experimental Results of the Hot Metal Gas Forming Technology for High Strength Steel and Stainless Steel Tubes Forming" (PDF), IDDRG 2007 International Conference, 908, Győr, Hungary: 1199, Bibcode:2007AIPC..908.1199V, doi:10.1063/1.2740973, archived from the original (PDF) on 2011-07-28.

Related Research Articles

<span class="mw-page-title-main">Stainless steel</span> Steel alloy resistant to corrosion

Stainless steel, also known as inox, corrosion-resistant steel (CRES) and rustless steel, is an alloy of iron that is resistant to rusting and corrosion. It contains iron with chromium and other elements such as molybdenum, carbon, nickel and nitrogen depending on its specific use and cost. Stainless steel's resistance to corrosion results from the 10.5%, or more, chromium content which forms a passive film that can protect the material and self-heal in the presence of oxygen.

<span class="mw-page-title-main">Forging</span> Metalworking process

Forging is a manufacturing process involving the shaping of metal using localized compressive forces. The blows are delivered with a hammer or a die. Forging is often classified according to the temperature at which it is performed: cold forging, warm forging, or hot forging. For the latter two, the metal is heated, usually in a forge. Forged parts can range in weight from less than a kilogram to hundreds of metric tons. Forging has been done by smiths for millennia; the traditional products were kitchenware, hardware, hand tools, edged weapons, cymbals, and jewellery.

In materials science, superplasticity is a state in which solid crystalline material is deformed well beyond its usual breaking point, usually over about 400% during tensile deformation. Such a state is usually achieved at high homologous temperature. Examples of superplastic materials are some fine-grained metals and ceramics. Other non-crystalline materials (amorphous) such as silica glass and polymers also deform similarly, but are not called superplastic, because they are not crystalline; rather, their deformation is often described as Newtonian fluid. Superplastically deformed material gets thinner in a very uniform manner, rather than forming a "neck" that leads to fracture. Also, the formation of microvoids, which is another cause of early fracture, is inhibited. Superplasticity must not be confused with superelasticity.

<span class="mw-page-title-main">Brazing</span> Metal-joining technique

Brazing is a metal-joining process in which two or more metal items are joined by melting and flowing a filler metal into the joint, with the filler metal having a lower melting point than the adjoining metal.

Forge welding (FOW), also called fire welding, is a solid-state welding process that joins two pieces of metal by heating them to a high temperature and then hammering them together. It may also consist of heating and forcing the metals together with presses or other means, creating enough pressure to cause plastic deformation at the weld surfaces. The process, although challenging, has been a method of joining metals used since ancient times and is a staple of traditional blacksmithing. Forge welding is versatile, being able to join a host of similar and dissimilar metals. With the invention of electrical welding and gas welding methods during the Industrial Revolution, manual forge-welding has been largely replaced, although automated forge-welding is a common manufacturing process.

<span class="mw-page-title-main">Extrusion</span> Process of pushing material through a die to create long symmetrical-shaped objects

Extrusion is a process used to create objects of a fixed cross-sectional profile by pushing material through a die of the desired cross-section. Its two main advantages over other manufacturing processes are its ability to create very complex cross-sections; and to work materials that are brittle, because the material encounters only compressive and shear stresses. It also creates excellent surface finish and gives considerable freedom of form in the design process.

<span class="mw-page-title-main">Monel</span> Solid-solution binary alloy of nickel and copper

Monel is a group of alloys of nickel and copper, with small amounts of iron, manganese, carbon, and silicon. Monel is not a cupronickel alloy because it has less than 60% copper.

<span class="mw-page-title-main">Carburizing</span> Heat treatment process in which a metal or alloy is infused with carbon to increase hardness

Carburizing, or carburising, is a heat treatment process in which iron or steel absorbs carbon while the metal is heated in the presence of a carbon-bearing material, such as charcoal or carbon monoxide. The intent is to make the metal harder and more wear resistant. Depending on the amount of time and temperature, the affected area can vary in carbon content. Longer carburizing times and higher temperatures typically increase the depth of carbon diffusion. When the iron or steel is cooled rapidly by quenching, the higher carbon content on the outer surface becomes hard due to the transformation from austenite to martensite, while the core remains soft and tough as a ferritic and/or pearlite microstructure.

<span class="mw-page-title-main">Heating element</span> Device that converts electricity into heat

A heating element is a device used for conversion of electric energy into heat, consisting of a heating resistor and accessories. Heat is generated by the passage of electric current through a resistor through a process known as Joule Heating. Heating elements are used in household appliances, industrial equipment, and scientific instruments enabling them to perform tasks such as cooking, warming, or maintaining specific temperatures higher than the ambient.

<span class="mw-page-title-main">Gas tungsten arc welding</span> Welding process

Gas tungsten arc welding is an arc welding process that uses a non-consumable tungsten electrode to produce the weld. The weld area and electrode are protected from oxidation or other atmospheric contamination by an inert shielding gas. A filler metal is normally used, though some welds, known as 'autogenous welds', or 'fusion welds' do not require it. A constant-current welding power supply produces electrical energy, which is conducted across the arc through a column of highly ionized gas and metal vapors known as a plasma.

<span class="mw-page-title-main">Sheet metal</span> Metal formed into thin, flat pieces

Sheet metal is metal formed into thin, flat pieces, usually by an industrial process.

<span class="mw-page-title-main">Hydroforming</span> Method of shaping metal through pressurized water

Hydroforming is a cost-effective way of shaping ductile metals such as aluminium, brass, low alloy steel, and stainless steel into lightweight, structurally stiff and strong pieces. One of the largest applications of hydroforming is the automotive industry, which makes use of the complex shapes made possible by hydroforming to produce stronger, lighter, and more rigid unibody structures for vehicles. This technique is particularly popular with the high-end sports car industry and is also frequently employed in the shaping of aluminium tubes for bicycle frames.

<span class="mw-page-title-main">Superalloy</span> Alloy with higher durability than normal metals

A superalloy, or high-performance alloy, is an alloy with the ability to operate at a high fraction of its melting point. Key characteristics of a superalloy include mechanical strength, thermal creep deformation resistance, surface stability, and corrosion and oxidation resistance.

<span class="mw-page-title-main">Nitriding</span> Nitrogen diffusion case-hardening process

Nitriding is a heat treating process that diffuses nitrogen into the surface of a metal to create a case-hardened surface. These processes are most commonly used on low-alloy steels. They are also used on titanium, aluminium and molybdenum.

6061 aluminium alloy is a precipitation-hardened aluminium alloy, containing magnesium and silicon as its major alloying elements. Originally called "Alloy 61S", it was developed in 1935. It has good mechanical properties, exhibits good weldability, and is very commonly extruded. It is one of the most common alloys of aluminium for general-purpose use.

<span class="mw-page-title-main">Nickel titanium</span> Alloy known for shape-memory effect

Nickel titanium, also known as nitinol, is a metal alloy of nickel and titanium, where the two elements are present in roughly equal atomic percentages. Different alloys are named according to the weight percentage of nickel; e.g., nitinol 55 and nitinol 60.

Semi-solid metal casting (SSM) is a near net shape variant of die casting. The process is used today with non-ferrous metals, such as aluminium, copper, and magnesium, but also can work with higher temperature alloys for which no currently suitable die materials are available. The process combines the advantages of casting and forging. The process is named after the fluid property thixotropy, which is the phenomenon that allows this process to work. Simply, thixotropic fluids flow when sheared, but thicken when standing. The potential for this type of process was first recognized in the early 1970s. There are three different processes: thixocasting, rheocasting, thixomolding. SIMA refers to a specialized process to prepare aluminum alloys for thixocasting using hot and cold working.

Superplastic forming is an industrial process used for creating precise and complex components out of superplastic materials.

<span class="mw-page-title-main">Metal spinning</span>

Metal spinning, also known as spin forming or spinning or metal turning most commonly, is a metalworking process by which a disc or tube of metal is rotated at high speed and formed into an axially symmetric part. Spinning can be performed by hand or by a CNC lathe.

Superforming is a hot metal forming process that uses similar principles to thermoforming plastics, where a sheet of material is heated and forced onto a male or female form using gas pressure. The process is useful for producing complex surfaces. The technique was pioneered for use in alloy fighter jets, with a sheet of aluminum heated like "taffy" and then "blown" into a mold by a press system, allowing complex curves. It heats the sheets to 500 degrees Celsius, and after molding, vacuums out the air.