Hydride compressor

Last updated

A hydride compressor is a hydrogen compressor based on metal hydrides with absorption of hydrogen at low pressure, releasing heat, and desorption of hydrogen at high pressure, absorbing heat, by raising the temperature with an external heat source like a heated waterbed or electric coil. [1] [2] [3] [4]

Contents

Advantages of the hydride compressor are the high volumetric density, no moving parts, simplicity in design and operation, the possibility to consume waste heat instead of electricity [5] and reversible absorption/desorption, disadvantages are the high cost of the metal hydride and weight.

Thermodynamic compression cycle of hydride compressor Thermodynamic compression cycle of hydride compressor.jpg
Thermodynamic compression cycle of hydride compressor

History

The first applications of metal hydrides were made by NASA to demonstrate long-term hydrogen storage for use in space propulsion. In the 1970s, automobiles, vans, and forklifts were demonstrated. [6] The metal hydrides were used for hydrogen storage, separation, and refrigeration. An example of current use are hydrogen sorption cryocoolers [7] and portable metal hydride compressors. [8]

See also

Related Research Articles

<span class="mw-page-title-main">Hydride</span> Molecule with a hydrogen bound to a more electropositive element or group

In chemistry, a hydride is formally the anion of hydrogen (H), a hydrogen atom with two electrons. The term is applied loosely. At one extreme, all compounds containing covalently bound H atoms are called hydrides: water (H2O) is a hydride of oxygen, ammonia is a hydride of nitrogen, etc. For inorganic chemists, hydrides refer to compounds and ions in which hydrogen is covalently attached to a less electronegative element. In such cases, the H centre has nucleophilic character, which contrasts with the protic character of acids. The hydride anion is very rarely observed.

<span class="mw-page-title-main">Adsorption</span> Phenomenon of surface adhesion

Adsorption is the adhesion of atoms, ions or molecules from a gas, liquid or dissolved solid to a surface. This process creates a film of the adsorbate on the surface of the adsorbent. This process differs from absorption, in which a fluid is dissolved by or permeates a liquid or solid. Adsorption is a surface phenomenon and the adsorbate does not penetrate through the surface and into the bulk of the adsorbent, while absorption involves transfer of the absorbate into the volume of the material, although adsorption does often precede absorption. The term sorption encompasses both adsorption and absorption, and desorption is the reverse of sorption.

Palladium hydride is metallic palladium that contains a substantial quantity of hydrogen within its crystal lattice. Despite its name, it is not an ionic hydride but rather an alloy of palladium with metallic hydrogen that can be written PdHx. At room temperature, palladium hydrides may contain two crystalline phases, α and β. Pure α-phase exists at x < 0.017 whereas pure β-phase is realised for x > 0.58; intermediate x values correspond to α-β mixtures.

<span class="mw-page-title-main">Lithium aluminium hydride</span> Chemical compound

Lithium aluminium hydride, commonly abbreviated to LAH, is an inorganic compound with the chemical formula Li[AlH4] or LiAlH4. It is a white solid, discovered by Finholt, Bond and Schlesinger in 1947. This compound is used as a reducing agent in organic synthesis, especially for the reduction of esters, carboxylic acids, and amides. The solid is dangerously reactive toward water, releasing gaseous hydrogen (H2). Some related derivatives have been discussed for hydrogen storage.

A refrigerator designed to reach cryogenic temperatures is often called a cryocooler. The term is most often used for smaller systems, typically table-top size, with input powers less than about 20 kW. Some can have input powers as low as 2–3 W. Large systems, such as those used for cooling the superconducting magnets in particle accelerators are more often called cryogenic refrigerators. Their input powers can be as high as 1 MW. In most cases cryocoolers use a cryogenic fluid as the working substance and employ moving parts to cycle the fluid around a thermodynamic cycle. The fluid is typically compressed at room temperature, precooled in a heat exchanger, then expanded at some low temperature. The returning low-pressure fluid passes through the heat exchanger to precool the high-pressure fluid before entering the compressor intake. The cycle is then repeated.

<span class="mw-page-title-main">Lithium hydride</span> Chemical compound

Lithium hydride is an inorganic compound with the formula LiH. This alkali metal hydride is a colorless solid, although commercial samples are grey. Characteristic of a salt-like (ionic) hydride, it has a high melting point, and it is not soluble but reactive with all protic organic solvents. It is soluble and nonreactive with certain molten salts such as lithium fluoride, lithium borohydride, and sodium hydride. With a molar mass of 7.95 g/mol, it is the lightest ionic compound.

<span class="mw-page-title-main">Zirconium hydride</span> Alloy of zirconium and hydrogen

Zirconium hydride describes an alloy made by combining zirconium and hydrogen. Hydrogen acts as a hardening agent, preventing dislocations in the zirconium atom crystal lattice from sliding past one another. Varying the amount of hydrogen and the form of its presence in the zirconium hydride controls qualities such as the hardness, ductility, and tensile strength of the resulting zirconium hydride. Zirconium hydride with increased hydrogen content can be made harder and stronger than zirconium, but such zirconium hydride is also less ductile than zirconium.

Ammonia production takes place worldwide, mostly in large-scale manufacturing plants that produce 235 million tonnes of ammonia (2021) annually. Leading producers are China (31.9%), Russia (8.7%), India (7.5%), and the United States (7.1%). 80% or more of ammonia is used as fertilizer. Ammonia is also used for the production of plastics, fibres, explosives, nitric acid, and intermediates for dyes and pharmaceuticals. The industry contributes 1% to 2% of global CO
2
.

<span class="mw-page-title-main">Titanium hydride</span> Chemical compound

Titanium hydride normally refers to the inorganic compound TiH2 and related nonstoichiometric materials. It is commercially available as a stable grey/black powder, which is used as an additive in the production of Alnico sintered magnets, in the sintering of powdered metals, the production of metal foam, the production of powdered titanium metal and in pyrotechnics.

<span class="mw-page-title-main">Hydrogen storage</span> Methods of storing hydrogen for later use

Several methods exist for storing hydrogen. These include mechanical approaches such as using high pressures and low temperatures, or employing chemical compounds that release H2 upon demand. While large amounts of hydrogen are produced by various industries, it is mostly consumed at the site of production, notably for the synthesis of ammonia. For many years hydrogen has been stored as compressed gas or cryogenic liquid, and transported as such in cylinders, tubes, and cryogenic tanks for use in industry or as propellant in space programs. Interest in using hydrogen for on-board storage of energy in zero-emissions vehicles is motivating the development of new methods of storage, more adapted to this new application. The overarching challenge is the very low boiling point of H2: it boils around 20.268 K (−252.882 °C or −423.188 °F). Achieving such low temperatures requires expending significant energy.

Hydrogen technologies are technologies that relate to the production and use of hydrogen as a part hydrogen economy. Hydrogen technologies are applicable for many uses.

A hydrogen compressor is a device that increases the pressure of hydrogen by reducing its volume resulting in compressed hydrogen or liquid hydrogen.

<span class="mw-page-title-main">Pulse tube refrigerator</span> Device using sound waves to reduce heat

The pulse tube refrigerator (PTR) or pulse tube cryocooler is a developing technology that emerged largely in the early 1980s with a series of other innovations in the broader field of thermoacoustics. In contrast with other cryocoolers, this cryocooler can be made without moving parts in the low temperature part of the device, making the cooler suitable for a wide variety of applications.

<span class="mw-page-title-main">Hydrogen tank</span> Container for hydrogen storage

A hydrogen tank is used for hydrogen storage. The first type IV hydrogen tanks for compressed hydrogen at 700 bars were demonstrated in 2001, the first fuel cell vehicles on the road with type IV tanks are the Toyota FCHV, Mercedes-Benz F-Cell and the GM HydroGen4.

A linear compressor is a gas compressor where the piston moves along a linear track to minimize friction and reduce energy loss during conversion of motion. This technology has been successfully used in cryogenic applications which must be oilless. Suspension spring can be flexure type or coil type. Oil-free valved linear compressor allows the use of compact heat exchangers. Linear compressors work similarly to a solenoid: by using a spring-loaded piston with an electromagnet connected to AC through a diode. The spring-loaded piston is the only moving part, and it is placed in the center of the electromagnet. During the positive cycle of the AC, the diode allows energy to pass through the electromagnet, generating a magnetic field that moves the piston backwards, compressing the spring, and generating suction. During the negative cycle of the AC, the diode blocks current flow to the electromagnet, letting the spring uncompress, moving the piston forward, and compressing the refrigerant. The compressed refrigerant is then released by a valve.

An electrochemical hydrogen compressor is a hydrogen compressor where hydrogen is supplied to the anode, and compressed hydrogen is collected at the cathode with an exergy efficiency up to and even beyond 80% for pressures up to 10,000 psi or 700 bars.

<span class="mw-page-title-main">Ionic liquid piston compressor</span>

An ionic liquid piston compressor, ionic compressor or ionic liquid piston pump is a hydrogen compressor based on an ionic liquid piston instead of a metal piston as in a piston-metal diaphragm compressor.

Binary compounds of hydrogen are binary chemical compounds containing just hydrogen and one other chemical element. By convention all binary hydrogen compounds are called hydrides even when the hydrogen atom in it is not an anion. These hydrogen compounds can be grouped into several types.

<span class="mw-page-title-main">Liquid organic hydrogen carriers</span> Organic compounds that can absorb and release hydrogen through chemical reactions

Liquid organic hydrogen carriers (LOHC) are organic compounds that can absorb and release hydrogen through chemical reactions. LOHCs can therefore be used as storage media for hydrogen. In principle, every unsaturated compound can take up hydrogen during hydrogenation. The sequence of endothermal dehydrogenation followed by hydrogen purification is considered as the main drawback which limits the overall efficiency of the storage cycle. LOHC shipping without heat recycling has an energy efficiency of 60-70%, depending on the dehydrogenation rate, which is equivalent to liquid hydrogen shipping. With heat recycling, the energy efficiency increase to 80-90%.

Sorption enhanced water gas shift (SEWGS) is a technology that combines a pre-combustion carbon capture process with the water gas shift reaction (WGS) in order to produce a hydrogen rich stream from the syngas fed to the SEWGS reactor.

References

  1. Metal hydride thermal sorption compressor [ permanent dead link ]
  2. Hydride compressor Archived 2012-05-03 at the Wayback Machine
  3. Popeneciu, G.; Almasan, V.; Coldea, I.; Lupu, D.; Misan, I.; Ardelean, O. (2009). "Investigation on a three-stage hydrogen thermal compressor based on metal hydrides". Journal of Physics: Conference Series. 182 (1): 012053. Bibcode:2009JPhCS.182a2053P. doi: 10.1088/1742-6596/182/1/012053 . S2CID   250673292.
  4. Wang, X.; Bei, Y.; Song, X.; Fang, G.; Li, S.; Chen, C.; Wang, Q. (2007). "Investigation on high-pressure metal hydride hydrogen compressors". International Journal of Hydrogen Energy. 32 (16): 4011–4015. doi:10.1016/j.ijhydene.2007.03.002.
  5. Lototskyy, M.V.; Yartys, V.A.; Pollet, B.G.; Bowman, R.C. (4 April 2012). "Metal hydride hydrogen compressors: A review". International Journal of Hydrogen Energy. 39 (11): 5818–5851. doi: 10.1016/j.ijhydene.2014.01.158 .
  6. Chandra, Dhanesh; Reilly, James J.; Chellappa, Raja (2006). "Metal hydrides for vehicular applications: The state of the art". JOM. 58 (2): 26–32. Bibcode:2006JOM....58b..26C. doi:10.1007/s11837-006-0005-0. S2CID   136414547.
  7. Bowman, R. C.; Prina, M.; Barber, D. S.; Bhandari, P.; Crumb, D.; Loc, A. S.; Morgante, G.; Reiter, J. W.; Schmelzel, M. E. (2003). "Evaluation of Hydride Compressor Elements for the Planck Sorption Cryocooler". Cryocoolers 12. pp. 627–635. doi:10.1007/0-306-47919-2_83. ISBN   978-0-306-47714-0.
  8. Metal hydride compressor Archived 2009-10-01 at the Wayback Machine