Hypothetical syllogism

Last updated
Hypothetical syllogism
Type Syllogism
Field
StatementWhenever instances of , and appear on lines of a proof, can be placed on a subsequent line.
Symbolic statement

In classical logic, a hypothetical syllogism is a valid argument form, a deductive syllogism with a conditional statement for one or both of its premises. Ancient references point to the works of Theophrastus and Eudemus for the first investigation of this kind of syllogisms. [1] [2]

Contents

Types

Hypothetical syllogisms come in two types: mixed and pure. A mixed hypothetical syllogism has two premises: one conditional statement and one statement that either affirms or denies the antecedent or consequent of that conditional statement. For example,

If P, then Q.
P.
∴ Q.

In this example, the first premise is a conditional statement in which "P" is the antecedent and "Q" is the consequent. The second premise "affirms" the antecedent. The conclusion, that the consequent must be true, is deductively valid.

A mixed hypothetical syllogism has four possible forms, two of which are valid, while the other two are invalid. A valid mixed hypothetical syllogism either affirms the antecedent (modus ponens) or denies the consequent (modus tollens). [3] An invalid hypothetical syllogism either affirms the consequent (fallacy of the converse) or denies the antecedent (fallacy of the inverse).

There are four possible forms of mixed hypothetical syllogisms, two of which are valid, while two of which are invalid. Considering a simple example demonstrates why forms are valid or invalid. If "p" represents "Candiru is a fish" and "q" represents "Candiru has gills," try to convince yourself by replacing these statements with p and q in the above table. In Quest of Univeral Logic HypoSyll.png
There are four possible forms of mixed hypothetical syllogisms, two of which are valid, while two of which are invalid. Considering a simple example demonstrates why forms are valid or invalid. If "p" represents "Candiru is a fish" and "q" represents "Candiru has gills," try to convince yourself by replacing these statements with p and q in the above table.

A pure hypothetical syllogism is a syllogism in which both premises and the conclusion are all conditional statements. The antecedent of one premise must match the consequent of the other for the conditional to be valid. Consequently, conditionals contain remained antecedent as antecedent and remained consequent as consequent.

If P, then Q.
If Q, then R.
∴ If P, then R.

An example in English:

If I do not wake up, then I cannot go to work.
If I cannot go to work, then I will not get paid.
Therefore, if I do not wake up, then I will not get paid.

Propositional logic

In propositional logic, hypothetical syllogism is the name of a valid rule of inference (often abbreviated HS and sometimes also called the chain argument, chain rule, or the principle of transitivity of implication). The rule may be stated:

In other words, whenever instances of "", and "" appear on lines of a proof, "" can be placed on a subsequent line.

Applicability

The rule of hypothetical syllogism holds in classical logic, intuitionistic logic, most systems of relevance logic, and many other systems of logic. However, it does not hold in all logics, including, for example, non-monotonic logic, probabilistic logic and default logic. The reason for this is that these logics describe defeasible reasoning, and conditionals that appear in real-world contexts typically allow for exceptions, default assumptions, ceteris paribus conditions, or just simple uncertainty.

An example, derived from Ernest W. Adams, [4]

  1. If Jones wins the election, Smith will retire after the election.
  2. If Smith dies before the election, Jones will win the election.
  3. If Smith dies before the election, Smith will retire after the election.

Clearly, (3) does not follow from (1) and (2). (1) is true by default, but fails to hold in the exceptional circumstances of Smith dying. In practice, real-world conditionals always tend to involve default assumptions or contexts, and it may be infeasible or even impossible to specify all the exceptional circumstances in which they might fail to be true. For similar reasons, the rule of hypothetical syllogism does not hold for counterfactual conditionals.

Formal notation

The hypothetical syllogism inference rule may be written in sequent notation, which amounts to a specialization of the cut rule:

where is a metalogical symbol and meaning that is a syntactic consequence of in some logical system;

and expressed as a truth-functional tautology or theorem of propositional logic:

where , , and are propositions expressed in some formal system.

Proof

StepPropositionDerivation
1Given
2Given
3 Conditional proof assumption
4 Modus ponens (1,3)
5Modus ponens (2,4)
6Conditional Proof (3-5)

Alternative forms

An alternative form of hypothetical syllogism, more useful for classical propositional calculus systems with implication and negation (i.e. without the conjunction symbol), is the following:

(HS1)

Yet another form is:

(HS2)

Proof

An example of the proofs of these theorems in such systems is given below. We use two of the three axioms used in one of the popular systems described by Jan Łukasiewicz. The proofs relies on two out of the three axioms of this system:

(A1)
(A2)

The proof of the (HS1) is as follows:

(1)     (instance of (A1))
(2)     (instance of (A2))
(3)     (from (1) and (2) by modus ponens)
(4)     (instance of (A2))
(5)     (from (3) and (4) by modus ponens)
(6)     (instance of (A1))
(7) (from (5) and (6) by modus ponens)

The proof of the (HS2) is given here.

As a metatheorem

Whenever we have two theorems of the form and , we can prove by the following steps:

(1)     (instance of the theorem proved above)
(2)     (instance of (T1))
(3)     (from (1) and (2) by modus ponens)
(4)     (instance of (T2))
(5)     (from (3) and (4) by modus ponens)

See also

Related Research Articles

In propositional logic, affirming the consequent, sometimes called converse error, fallacy of the converse, or confusion of necessity and sufficiency, is a formal fallacy of taking a true conditional statement under certain assumptions, and invalidly inferring its converse, even though that statement may not be true under the same assumptions. This arises when the consequent has other possible antecedents.

In classical logic, disjunctive syllogism is a valid argument form which is a syllogism having a disjunctive statement for one of its premises.

The propositional calculus is a branch of logic. It is also called propositional logic, statement logic, sentential calculus, sentential logic, or sometimes zeroth-order logic. It deals with propositions and relations between propositions, including the construction of arguments based on them. Compound propositions are formed by connecting propositions by logical connectives representing the truth functions of conjunction, disjunction, implication, equivalence, and negation. Some sources include other connectives, as in the table below.

In propositional logic, modus ponens, also known as modus ponendo ponens, implication elimination, or affirming the antecedent, is a deductive argument form and rule of inference. It can be summarized as "P implies Q.P is true. Therefore, Q must also be true."

In propositional logic, modus tollens (MT), also known as modus tollendo tollens and denying the consequent, is a deductive argument form and a rule of inference. Modus tollens is a mixed hypothetical syllogism that takes the form of "If P, then Q. Not Q. Therefore, not P." It is an application of the general truth that if a statement is true, then so is its contrapositive. The form shows that inference from P implies Q to the negation of Q implies the negation of P is a valid argument.

Deductive reasoning is the mental process of drawing deductive inferences. An inference is deductively valid if its conclusion follows logically from its premises, i.e. it is impossible for the premises to be true and the conclusion to be false.

Denying the antecedent, sometimes also called inverse error or fallacy of the inverse, is a formal fallacy of inferring the inverse from an original statement. It is a type of mixed hypothetical syllogism in the form:

Intuitionistic logic, sometimes more generally called constructive logic, refers to systems of symbolic logic that differ from the systems used for classical logic by more closely mirroring the notion of constructive proof. In particular, systems of intuitionistic logic do not assume the law of the excluded middle and double negation elimination, which are fundamental inference rules in classical logic.

In propositional logic, double negation is the theorem that states that "If a statement is true, then it is not the case that the statement is not true." This is expressed by saying that a proposition A is logically equivalent to not (not-A), or by the formula A ≡ ~(~A) where the sign ≡ expresses logical equivalence and the sign ~ expresses negation.

In mathematical logic, a deduction theorem is a metatheorem that justifies doing conditional proofs from a hypothesis in systems that do not explicitly axiomatize that hypothesis, i.e. to prove an implication A → B, it is sufficient to assume A as a hypothesis and then proceed to derive B. Deduction theorems exist for both propositional logic and first-order logic. The deduction theorem is an important tool in Hilbert-style deduction systems because it permits one to write more comprehensible and usually much shorter proofs than would be possible without it. In certain other formal proof systems the same conveniency is provided by an explicit inference rule; for example natural deduction calls it implication introduction.

<span class="mw-page-title-main">Material conditional</span> Logical connective

The material conditional is an operation commonly used in logic. When the conditional symbol is interpreted as material implication, a formula is true unless is true and is false. Material implication can also be characterized inferentially by modus ponens, modus tollens, conditional proof, and classical reductio ad absurdum.

An antecedent is the first half of a hypothetical proposition, whenever the if-clause precedes the then-clause. In some contexts the antecedent is called the protasis.

Constructive dilemma is a valid rule of inference of propositional logic. It is the inference that, if P implies Q and R implies S and either P or R is true, then either Q or S has to be true. In sum, if two conditionals are true and at least one of their antecedents is, then at least one of their consequents must be too. Constructive dilemma is the disjunctive version of modus ponens, whereas, destructive dilemma is the disjunctive version of modus tollens. The constructive dilemma rule can be stated:

Destructive dilemma is the name of a valid rule of inference of propositional logic. It is the inference that, if P implies Q and R implies S and either Q is false or S is false, then either P or R must be false. In sum, if two conditionals are true, but one of their consequents is false, then one of their antecedents has to be false. Destructive dilemma is the disjunctive version of modus tollens. The disjunctive version of modus ponens is the constructive dilemma. The destructive dilemma rule can be stated:

In propositional logic, transposition is a valid rule of replacement that permits one to switch the antecedent with the consequent of a conditional statement in a logical proof if they are also both negated. It is the inference from the truth of "A implies B" to the truth of "Not-B implies not-A", and conversely. It is very closely related to the rule of inference modus tollens. It is the rule that

In mathematical logic, the implicational propositional calculus is a version of classical propositional calculus that uses only one connective, called implication or conditional. In formulas, this binary operation is indicated by "implies", "if ..., then ...", "→", "", etc..

In logic, especially mathematical logic, a Hilbert system, sometimes called Hilbert calculus, Hilbert-style deductive system or Hilbert–Ackermann system, is a type of system of formal deduction attributed to Gottlob Frege and David Hilbert. These deductive systems are most often studied for first-order logic, but are of interest for other logics as well.

In logic and mathematics, contraposition refers to the inference of going from a conditional statement into its logically equivalent contrapositive, and an associated proof method known as proof by contraposition. The contrapositive of a statement has its antecedent and consequent inverted and flipped.

Exportation is a valid rule of replacement in propositional logic. The rule allows conditional statements having conjunctive antecedents to be replaced by statements having conditional consequents and vice versa in logical proofs. It is the rule that:

References

  1. "History of Logic: Theophrastus of Eresus" in Encyclopædia Britannica Online.
  2. Susanne Bobzien,"The Development of Modus Ponens in Antiquity: "From Aristotle to the 2nd Century AD", Phronesis, Vol. 47, No. 4 (2002), pp. 359-394.
  3. 1 2 Kashef, Arman. (2023), In Quest of Univeral Logic: A brief overview of formal logic's evolution, doi:10.13140/RG.2.2.24043.82724/1
  4. Adams, Ernest W. (1975). The Logic of Conditionals. Dordrecht: Reidel. p. 22.