Transposition (logic)

Last updated
Transposition
Type Rule of replacement
Field Propositional calculus
StatementThe inference from the truth of "A implies B" to the truth of "Not-B implies not-A"
Symbolic statement

In propositional logic, transposition [1] [2] [3] is a valid rule of replacement that permits one to switch the antecedent with the consequent of a conditional statement in a logical proof if they are also both negated. It is the inference from the truth of "A implies B" to the truth of "Not-B implies not-A", and conversely. [4] [5] It is very closely related to the rule of inference modus tollens. It is the rule that

Contents

where "" is a metalogical symbol representing "can be replaced in a proof with".

Formal notation

The transposition rule may be expressed as a sequent:

where is a metalogical symbol meaning that is a syntactic consequence of in some logical system;

or as a rule of inference:

where the rule is that wherever an instance of "" appears on a line of a proof, it can be replaced with "";

or as the statement of a truth-functional tautology or theorem of propositional logic. The principle was stated as a theorem of propositional logic by Russell and Whitehead in Principia Mathematica as:

where and are propositions expressed in some formal system.

Traditional logic

Form of transposition

In the inferred proposition, the consequent is the contradictory of the antecedent in the original proposition, and the antecedent of the inferred proposition is the contradictory of the consequent of the original proposition. The symbol for material implication signifies the proposition as a hypothetical, or the "if-then" form, e.g. "if P then Q".

The biconditional statement of the rule of transposition (↔) refers to the relation between hypothetical (→) propositions, with each proposition including an antecedent and consequential term. As a matter of logical inference, to transpose or convert the terms of one proposition requires the conversion of the terms of the propositions on both sides of the biconditional relationship. Meaning, to transpose or convert (P → Q) to (Q → P) requires that the other proposition, (~Q → ~P), be transposed or converted to (~P → ~Q). Otherwise, to convert the terms of one proposition and not the other renders the rule invalid, violating the sufficient condition and necessary condition of the terms of the propositions, where the violation is that the changed proposition commits the fallacy of denying the antecedent or affirming the consequent by means of illicit conversion.

The truth of the rule of transposition is dependent upon the relations of sufficient condition and necessary condition in logic.

Sufficient condition

In the proposition "If P then Q", the occurrence of 'P' is sufficient reason for the occurrence of 'Q'. 'P', as an individual or a class, materially implicates 'Q', but the relation of 'Q' to 'P' is such that the converse proposition "If Q then P" does not necessarily have sufficient condition. The rule of inference for sufficient condition is modus ponens, which is an argument for conditional implication:

  1. Premise (1): If P, then Q
  2. Premise (2): P
  3. Conclusion: Therefore, Q

Necessary condition

Since the converse of premise (1) is not valid, all that can be stated of the relationship of 'P' and 'Q' is that in the absence of 'Q', 'P' does not occur, meaning that 'Q' is the necessary condition for 'P'. The rule of inference for necessary condition is modus tollens:

  1. Premise (1): If P, then Q
  2. Premise (2): not Q
  3. Conclusion: Therefore, not P

Necessity and sufficiency example

An example traditionally used by logicians contrasting sufficient and necessary conditions is the statement "If there is fire, then oxygen is present". An oxygenated environment is necessary for fire or combustion, but simply because there is an oxygenated environment does not necessarily mean that fire or combustion is occurring. While one can infer that fire stipulates the presence of oxygen, from the presence of oxygen the converse "If there is oxygen present, then fire is present" cannot be inferred. All that can be inferred from the original proposition is that "If oxygen is not present, then there cannot be fire".

Relationship of propositions

The symbol for the biconditional ("↔") signifies the relationship between the propositions is both necessary and sufficient, and is verbalized as "if and only if", or, according to the example "If P then Q 'if and only if' if not Q then not P".

Necessary and sufficient conditions can be explained by analogy in terms of the concepts and the rules of immediate inference of traditional logic. In the categorical proposition "All S is P", the subject term 'S' is said to be distributed, that is, all members of its class are exhausted in its expression. Conversely, the predicate term 'P' cannot be said to be distributed, or exhausted in its expression because it is indeterminate whether every instance of a member of 'P' as a class is also a member of 'S' as a class. All that can be validly inferred is that "Some P are S". Thus, the type 'A' proposition "All P is S" cannot be inferred by conversion from the original 'A' type proposition "All S is P". All that can be inferred is the type "A" proposition "All non-P is non-S" (Note that (P → Q) and (~Q → ~P) are both 'A' type propositions). Grammatically, one cannot infer "all mortals are men" from "All men are mortal". An 'A' type proposition can only be immediately inferred by conversion when both the subject and predicate are distributed, as in the inference "All bachelors are unmarried men" from "All unmarried men are bachelors".

Transposition and the method of contraposition

In traditional logic the reasoning process of transposition as a rule of inference is applied to categorical propositions through contraposition and obversion, [6] a series of immediate inferences where the rule of obversion is first applied to the original categorical proposition "All S is P"; yielding the obverse "No S is non-P". In the obversion of the original proposition to an 'E' type proposition, both terms become distributed. The obverse is then converted, resulting in "No non-P is S", maintaining distribution of both terms. The "No non-P is S" is again obverted, resulting in the [contrapositive] "All non-P is non-S". Since nothing is said in the definition of contraposition with regard to the predicate of the inferred proposition, it is permissible that it could be the original subject or its contradictory, and the predicate term of the resulting 'A' type proposition is again undistributed. This results in two contrapositives, one where the predicate term is distributed, and another where the predicate term is undistributed. [7]

Differences between transposition and contraposition

Note that the method of transposition and contraposition should not be confused. Contraposition is a type of immediate inference in which from a given categorical proposition another categorical proposition is inferred which has as its subject the contradictory of the original predicate. Since nothing is said in the definition of contraposition with regard to the predicate of the inferred proposition, it is permissible that it could be the original subject or its contradictory. This is in contradistinction to the form of the propositions of transposition, which may be material implication, or a hypothetical statement. The difference is that in its application to categorical propositions the result of contraposition is two contrapositives, each being the obvert of the other, [8] i.e. "No non-P is S" and "All non-P is non-S". The distinction between the two contrapositives is absorbed and eliminated in the principle of transposition, which presupposes the "mediate inferences" [9] of contraposition and is also referred to as the "law of contraposition". [10]

Transposition in mathematical logic

Proofs

PropositionDerivation
Given
Material implication
Commutativity
Double negation
Material implication

In classical propositional calculus system

In Hilbert-style deductive systems for propositional logic, only one side of the transposition is taken as an axiom, and the other is a theorem. We describe a proof of this theorem in the system of three axioms proposed by Jan Łukasiewicz:

A1.
A2.
A3.

(A3) already gives one of the directions of the transposition. The other side, , is proven below, using the following lemmas proven here:

(DN1) - Double negation (one direction)
(DN2) - Double negation (another direction)
(HS1) - one form of Hypothetical syllogism
(HS2) - another form of Hypothetical syllogism.

We also use the method of the hypothetical syllogism metatheorem as a shorthand for several proof steps.

The proof is as follows:

  1.     (instance of the (DN2))
  2.     (instance of the (HS1)
  3.     (from (1) and (2) by modus ponens)
  4.     (instance of the (DN1))
  5.     (instance of the (HS2))
  6.     (from (4) and (5) by modus ponens)
  7.     (from (3) and (6) using the hypothetical syllogism metatheorem)
  8.     (instance of (A3))
  9.     (from (7) and (8) using the hypothetical syllogism metatheorem)

See also

Citations

  1. Hurley 2011, p. 414.
  2. Copi & Cohen 2005, p. 371.
  3. Moore & Parker 2020.
  4. Brody 1973, p. 76.
  5. Copi 1979 See the Rules of Replacement, pp. 39–40.
  6. Stebbing 1961 , pp. 65–66. For reference to the initial step of contraposition as obversion and conversion, see Copi 1953 , p. 141.
  7. See Stebbing 1961 , pp. 65–66. Also, for reference to the immediate inferences of obversion, conversion, and obversion again, see Copi 1953 , p. 141.
  8. See Stebbing 1961 , pp. 66.
  9. For an explanation of the absorption of obversion and conversion as "mediate inferences" see: Copi 1979 , pp. 171–174.
  10. Prior 1973.

Related Research Articles

In classical logic, disjunctive syllogism is a valid argument form which is a syllogism having a disjunctive statement for one of its premises.

The propositional calculus is a branch of logic. It is also called propositional logic, statement logic, sentential calculus, sentential logic, or sometimes zeroth-order logic. It deals with propositions and relations between propositions, including the construction of arguments based on them. Compound propositions are formed by connecting propositions by logical connectives representing the truth functions of conjunction, disjunction, implication, biconditional, and negation. Some sources include other connectives, as in the table below.

In propositional logic, modus ponens, also known as modus ponendo ponens, implication elimination, or affirming the antecedent, is a deductive argument form and rule of inference. It can be summarized as "P implies Q.P is true. Therefore, Q must also be true."

In propositional logic, modus tollens (MT), also known as modus tollendo tollens and denying the consequent, is a deductive argument form and a rule of inference. Modus tollens is a mixed hypothetical syllogism that takes the form of "If P, then Q. Not Q. Therefore, not P." It is an application of the general truth that if a statement is true, then so is its contrapositive. The form shows that inference from P implies Q to the negation of Q implies the negation of P is a valid argument.

In logic and proof theory, natural deduction is a kind of proof calculus in which logical reasoning is expressed by inference rules closely related to the "natural" way of reasoning. This contrasts with Hilbert-style systems, which instead use axioms as much as possible to express the logical laws of deductive reasoning.

In logic and mathematics, the converse of a categorical or implicational statement is the result of reversing its two constituent statements. For the implication PQ, the converse is QP. For the categorical proposition All S are P, the converse is All P are S. Either way, the truth of the converse is generally independent from that of the original statement.

In logic, an inverse is a type of conditional sentence which is an immediate inference made from another conditional sentence. More specifically, given a conditional sentence of the form , the inverse refers to the sentence . Since an inverse is the contrapositive of the converse, inverse and converse are logically equivalent to each other.

Intuitionistic logic, sometimes more generally called constructive logic, refers to systems of symbolic logic that differ from the systems used for classical logic by more closely mirroring the notion of constructive proof. In particular, systems of intuitionistic logic do not assume the law of the excluded middle and double negation elimination, which are fundamental inference rules in classical logic.

In classical logic, a hypothetical syllogism is a valid argument form, a deductive syllogism with a conditional statement for one or both of its premises. Ancient references point to the works of Theophrastus and Eudemus for the first investigation of this kind of syllogisms.

In propositional logic, double negation is the theorem that states that "If a statement is true, then it is not the case that the statement is not true". This is expressed by saying that a proposition A is logically equivalent to not (not-A), or by the formula A ≡ ~(~A) where the sign ≡ expresses logical equivalence and the sign ~ expresses negation.

An antecedent is the first half of a hypothetical proposition, whenever the if-clause precedes the then-clause. In some contexts the antecedent is called the protasis.

In traditional logic, obversion is a "type of immediate inference in which from a given proposition another proposition is inferred whose subject is the same as the original subject, whose predicate is the contradictory of the original predicate, and whose quality is affirmative if the original proposition's quality was negative and vice versa". The quality of the inferred categorical proposition is changed but the truth value is the same to the original proposition. The immediately inferred proposition is termed the "obverse" of the original proposition, and is a valid form of inference for all types of categorical propositions.

In logic, a categorical proposition, or categorical statement, is a proposition that asserts or denies that all or some of the members of one category are included in another. The study of arguments using categorical statements forms an important branch of deductive reasoning that began with the Ancient Greeks.

In set theory, -induction, also called epsilon-induction or set-induction, is a principle that can be used to prove that all sets satisfy a given property. Considered as an axiomatic principle, it is called the axiom schema of set induction.

In mathematical logic, Heyting arithmetic is an axiomatization of arithmetic in accordance with the philosophy of intuitionism. It is named after Arend Heyting, who first proposed it.

Epistemic modal logic is a subfield of modal logic that is concerned with reasoning about knowledge. While epistemology has a long philosophical tradition dating back to Ancient Greece, epistemic logic is a much more recent development with applications in many fields, including philosophy, theoretical computer science, artificial intelligence, economics and linguistics. While philosophers since Aristotle have discussed modal logic, and Medieval philosophers such as Avicenna, Ockham, and Duns Scotus developed many of their observations, it was C. I. Lewis who created the first symbolic and systematic approach to the topic, in 1912. It continued to mature as a field, reaching its modern form in 1963 with the work of Kripke.

In logic, especially mathematical logic, a Hilbert system, sometimes called Hilbert calculus, Hilbert-style deductive system or Hilbert–Ackermann system, is a type of system of formal deduction attributed to Gottlob Frege and David Hilbert. These deductive systems are most often studied for first-order logic, but are of interest for other logics as well.

In logic and mathematics, contraposition refers to the inference of going from a conditional statement into its logically equivalent contrapositive, and an associated proof method known as § Proof by contrapositive. The contrapositive of a statement has its antecedent and consequent inverted and flipped.

In constructive mathematics, pseudo-order is a name given to certain binary relations appropriate for modeling continuous orderings.

References