ICESat-2

Last updated
ICESat-2
ICESat-2 spacecraft model.png
Artist's impression of ICESat-2 in orbit
Mission type Remote sensing
Operator NASA
COSPAR ID 2018-070A OOjs UI icon edit-ltr-progressive.svg
SATCAT no. 43613
Website icesat-2.gsfc.nasa.gov
Mission durationPlanned: 3 years
Elapsed: 5 years, 7 months, 17 days
Spacecraft properties
Bus LEOStar-3 [1]
Manufacturer Orbital Sciences/Orbital ATK [1]
Launch mass1,514 kg (3,338 lb) [2]
Payload mass298 kg (657 lb) [3]
DimensionsAt launch: 2.5 × 1.9 × 3.8 m (8.2 × 6.2 × 12.5 ft) [2]
Power1200 W
Start of mission
Launch date15 September 2018, 13:02 (2018-09-15UTC13:02)  UTC [4]
Rocket Delta II 7420-10C [5] [6]
Launch site Vandenberg SLC-2W [6]
Contractor United Launch Alliance
Orbital parameters
Reference system Geocentric
Regime Low Earth
Semi-major axis 6,859.07 km (4,262.03 mi)
Eccentricity 0.0002684
Perigee altitude 479.10 km (297.70 mi)
Apogee altitude 482.78 km (299.99 mi)
Inclination 92.0002°
Period 94.22 minutes
Velocity6.9 km/s (4.3 mi/s) [7]
Epoch 8 March 2019, 15:04:15 UTC [8]
ICESat-2 logo.png  

ICESat-2 (Ice, Cloud, and Land Elevation Satellite 2), part of NASA's Earth Observing System, is a satellite mission for measuring ice sheet elevation and sea ice thickness, as well as land topography, vegetation characteristics, and clouds. [9] ICESat-2, a follow-on to the ICESat mission, was launched on 15 September 2018 onboard Delta II as the final flight from Vandenberg Air Force Base in California, [4] into a near-circular, near-polar orbit with an altitude of approximately 496 km (308 mi). It was designed to operate for three years and carry enough propellant for seven years. [10] The satellite orbits Earth at a speed of 6.9 kilometers per second (4.3 mi/s). [7]

Contents

The ICESat-2 mission is designed to provide elevation data needed to determine ice sheet mass balance as well as vegetation canopy information. It will provide topography measurements of cities, lakes and reservoirs, oceans and land surfaces around the globe, in addition to the polar-specific coverage. ICESat-2 also has the ability to detect seafloor topography up to 100 feet (30m) below the surface in clear watered coastal areas. [11]  Because the great changes of polar ice cover in global warming are not quantified, one of the main purposes of ICESat-2 is measuring the changing of the elevation of ice sheets by its laser system and lidar to quantify the influence of melting ice sheet in sea-level raising. Additionally, the high accuracy of multiple pulses allows collecting measurement of the heights of sea ice to analyze its change rate during the time. [12]

The ICESat-2 spacecraft was built and tested by Northrop Grumman Innovation Systems in Gilbert, Arizona, [13] while the on board instrument, ATLAS, was built and managed by Goddard Space Flight Center in Greenbelt, Maryland. The ATLAS instrument was designed and built by the center, and the bus was built by and integrated with the instrument by Orbital Sciences (later Orbital ATK). [14] The satellite was launched on a Delta II rocket provided by United Launch Alliance. [15] This was the last launch of the Delta II rocket.

Satellite instruments

ATLAS instrument assembly at NASA GSFC Icesat-2 atlas integration.jpg
ATLAS instrument assembly at NASA GSFC

The sole instrument on ICESat-2 is the Advanced Topographic Laser Altimeter System (ATLAS), a space-based lidar. It was designed and built at Goddard Space Flight Center, with the laser generation and detection systems provided by Fibertek. [16] [17] ATLAS measures the travel time of laser photons from the satellite to Earth and back; computer programs use the travel time from multiple pulses to determine elevation. [18]

ATLAS emits visible laser pulses at 532 nm wavelength (Green). As ICESat-2 orbits, ATLAS generates six beams arranged in three pairs in order to better determine the surface's slope and provide more ground coverage. Its predecessor, ICESat, had only one laser beam. The greater number of lasers allows for improved coverage of Earth's surface. [7] Each beam pair is 3.3 km (2.1 mi) apart across the beam track, and each beam in a pair is separated by 2.5 km (1.6 mi) along the beam track. The laser array is rotated 2 degrees from the satellite's ground track so that a beam pair track is separated by about 90 m (300 ft). The laser pulse rate combined with satellite speed results in ATLAS taking an elevation measurement every 70 cm (28 in) along the satellite's ground path. [17] [19] [20]

The laser fires at a rate of 10 kHz. Each pulse sends out about 20 trillion photons, almost all of which are dispersed or deflected as the pulse travels to Earth's surface and bounces back to the satellite. About a dozen photons from each pulse return to the instrument and are collected with a 79 cm (2.6 ft) beryllium telescope. [21] Beryllium has high specific strength and holds its shape across a large range of temperatures. The telescope collects photons with wavelength of 532 nm, thus filters out irrelevant light in the atmosphere. Computer programs further identify 532 nm photons in the dataset; only reflected photons of the laser are kept for analysis. [22]

A notable attribute of ATLAS is that engineers enabled the satellite to control how it is positioned in space, which is relevant because ATLAS records the distance from itself to the ground, and if its position is off, the measurement recorded for Earth's elevation will be off as well. Engineers also constructed the laser reference system, which confirms that the laser is adjusted in accordance to the telescope. If either the telescope or the laser is off, the satellite can make its own adjustments accordingly. [23]

The National Snow and Ice Data Center Distributed Active Archive Center manages ICESat-2 science data. [24]

Mission science

ICESat-2 has four science objectives: [25] [26]

  1. Quantify polar ice sheet contributions to current and recent sea-level change and the linkages to climate conditions;
  2. Quantify regional signatures of ice-sheet changes to assess the mechanisms driving those changes and improve predictive ice sheet models; this includes quantifying the regional evolution of ice sheet changes, such as how changes at outlet glacier termini propagate inward;
  3. Estimate sea-ice thickness to examine ice/ocean/atmosphere exchanges of energy, mass and moisture;
  4. Measure vegetation canopy height as a basis for estimating large-scale biomass and biomass change. For this mission, the data of heights of vegetation canopy are highly accurate by using the multibeam system and micropulse lidar (photon-counting) technology in Advanced Topographic Laser Altimeter System (ATLAS). [27]

In addition, ICESat-2 will take measurements of clouds and aerosols, the height of oceans, inland water bodies like reservoirs and lakes, cities, and ground movements after events like earthquakes or landslides. [25]

Project development

Launch of ICESat-2 Icesat-2 launch smoke (cropped).jpg
Launch of ICESat-2

ICESat-2 is a follow-up to the original ICESat mission, which was decommissioned in 2010. When the project entered its first phase in 2010, it was expected to be ready for launch as soon as 2015. In December 2012, NASA reported that they expected the project to launch in 2016. In the following years, technical issues with the mission's only onboard instrument, ATLAS, delayed the mission further, pushing the expected launch back from late 2016 to May 2017. [28] In July 2014, NASA submitted a report to Congress detailing the reasons for the delay and a projected budget overrun, as is required by law for NASA projects which spend at least 15% over budget. In order to finance the budget overrun, NASA diverted funds from other planned satellite missions, such as the Plankton, Aerosol, Cloud, ocean Ecosystem (PACE) satellite. [29]

The launch of ICESat-2 took place on 15 September 2018 at 15:02 UTC from Vandenberg Air Force Base Space Launch Complex 2 aboard a Delta II 7420-10C. [4] To maintain a degree of data continuity between the decommissioning of ICESat and the launch of ICESat-2, NASA's airborne Operation IceBridge used a variety of aircraft to collect polar topography and measure ice thickness using suites of laser altimeters, radars, and other systems. [30] [31]

Applications

ICESat-2's Applications program is designed to engage people and organizations who plan to use the data, before the satellite launches. Selected from a pool of applicants, this Science Definition Team represents experts in a wide variety of scientific fields including hydrology, atmospheric science, oceanography, and vegetation science. [32] Early Adopters in the program, including ice scientists, ecologists, and the Navy, work with the ICESat-2 applications team to provide information on how the satellite observations can be used. [33] The goal of this group is to communicate the vast capabilities of the ICESat-2 mission with the greater scientific community, with the aim to diversify and innovate new methods and techniques from the collected data. For example, scientists in the ecology field will be able to use the measurement of vegetation height, biomass, and canopy cover derived from ICESat-2's photon counting lidar (PCL). [34]

In the spring of 2020, NASA selected the ICESat-2 Science Team through a competitive application process, to replace the pre-launch Science Definition Team. [35] This group acts as an advisory board to the mission post-launch, in an effort to ensure the mission science requirements are met.

See also

Related Research Articles

<span class="mw-page-title-main">Lidar</span> Method of spatial measurement using laser

Lidar is a method for determining ranges by targeting an object or a surface with a laser and measuring the time for the reflected light to return to the receiver. Lidar may operate in a fixed direction or it may scan multiple directions, in which case it is known as lidar scanning or 3D laser scanning, a special combination of 3-D scanning and laser scanning. Lidar has terrestrial, airborne, and mobile applications.

<span class="mw-page-title-main">Digital elevation model</span> 3D computer-generated imagery and measurements of terrain

A digital elevation model (DEM) or digital surface model (DSM) is a 3D computer graphics representation of elevation data to represent terrain or overlaying objects, commonly of a planet, moon, or asteroid. A "global DEM" refers to a discrete global grid. DEMs are used often in geographic information systems (GIS), and are the most common basis for digitally produced relief maps. A digital terrain model (DTM) represents specifically the ground surface while DEM and DSM may represent tree top canopy or building roofs.

<span class="mw-page-title-main">Satellite laser ranging</span>

In satellite laser ranging (SLR) a global network of observation stations measures the round trip time of flight of ultrashort pulses of light to satellites equipped with retroreflectors. This provides instantaneous range measurements of millimeter level precision which can be accumulated to provide accurate measurement of orbits and a host of important scientific data. The laser pulse can also be reflected by the surface of a satellite without a retroreflector, which is used for tracking space debris.

<span class="mw-page-title-main">Bathymetry</span> Study of underwater depth of lake or ocean floors

Bathymetry is the study of underwater depth of ocean floors, lake floors, or river floors. In other words, bathymetry is the underwater equivalent to hypsometry or topography. The first recorded evidence of water depth measurements are from Ancient Egypt over 3000 years ago. Bathymetric charts, are typically produced to support safety of surface or sub-surface navigation, and usually show seafloor relief or terrain as contour lines and selected depths (soundings), and typically also provide surface navigational information. Bathymetric maps may also use a Digital Terrain Model and artificial illumination techniques to illustrate the depths being portrayed. The global bathymetry is sometimes combined with topography data to yield a global relief model. Paleobathymetry is the study of past underwater depths.

<span class="mw-page-title-main">Jason-1</span> Satellite oceanography mission

Jason-1 was a satellite altimeter oceanography mission. It sought to monitor global ocean circulation, study the ties between the ocean and the atmosphere, improve global climate forecasts and predictions, and monitor events such as El Niño and ocean eddies. Jason-1 was launched in 2001 and it was followed by OSTM/Jason-2 in 2008, and Jason-3 in 2016 – the Jason satellite series. Jason-1 was launched alongside the TIMED spacecraft.

<span class="mw-page-title-main">Satellite geodesy</span> Measurement of the Earth using satellites

Satellite geodesy is geodesy by means of artificial satellites—the measurement of the form and dimensions of Earth, the location of objects on its surface and the figure of the Earth's gravity field by means of artificial satellite techniques. It belongs to the broader field of space geodesy. Traditional astronomical geodesy is not commonly considered a part of satellite geodesy, although there is considerable overlap between the techniques.

<span class="mw-page-title-main">TOPEX/Poseidon</span> Satellite mission to map ocean surface topography

TOPEX/Poseidon was a joint satellite altimeter mission between NASA, the U.S. space agency; and CNES, the French space agency, to map ocean surface topography. Launched on August 10, 1992, it was the first major oceanographic research satellite. TOPEX/Poseidon helped revolutionize oceanography by providing data previously impossible to obtain. Oceanographer Walter Munk described TOPEX/Poseidon as "the most successful ocean experiment of all time." A malfunction ended normal satellite operations in January 2006.

CryoSat is an ESA programme to monitor variations in the extent and thickness of polar ice through use of a satellite in low Earth orbit. The information provided about the behaviour of coastal glaciers that drain thinning ice sheets will be key to better predictions of future sea level rise. The CryoSat-1 spacecraft was lost in a launch failure in 2005, however the programme was resumed with the successful launch of a replacement, CryoSat-2, launched on 8 April 2010.

<span class="mw-page-title-main">ICESat</span> NASA satellite to observe ice sheets, clouds, and land; 2003–2010

ICESat was a NASA satellite mission for measuring ice sheet mass balance, cloud and aerosol heights, as well as land topography and vegetation characteristics. It operated as part of NASA's Earth Observing System (EOS). ICESat was launched 13 January 2003 on a Delta II launch vehicle from Vandenberg Air Force Base in California into a near-circular, near-polar orbit with an altitude of approximately 600 km (370 mi). It operated for seven years before being retired in February 2010, after its scientific payload shut down and scientists were unable to restart it.

<span class="mw-page-title-main">ADM-Aeolus</span> Wind-measuring satellite

Aeolus, or, in full, Atmospheric Dynamics Mission-Aeolus (ADM-Aeolus), was an Earth observation satellite operated by the European Space Agency (ESA). It was built by Airbus Defence and Space, launched on 22 August 2018, and operated until it was deorbited and re-entered the atmosphere over Antarctica on 28 July 2023. ADM-Aeolus was the first satellite with equipment capable of performing global wind-component-profile observation and provided much-needed information to improve weather forecasting. Aeolus was the first satellite capable of observing what the winds are doing on Earth, from the surface of the planet and into the stratosphere 30 km high.

<span class="mw-page-title-main">CALIPSO</span>

CALIPSO was a joint NASA (USA) and CNES (France) environmental satellite, built in the Cannes Mandelieu Space Center, which was launched atop a Delta II rocket on April 28, 2006. Its name stands for Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations. CALIPSO launched alongside CloudSat.

<span class="mw-page-title-main">OSTM/Jason-2</span> International Earth observation satellite mission

OSTM/Jason-2, or Ocean Surface Topography Mission/Jason-2 satellite, was an international Earth observation satellite altimeter joint mission for sea surface height measurements between NASA and CNES. It was the third satellite in a series started in 1992 by the NASA/CNES TOPEX/Poseidon mission and continued by the NASA/CNES Jason-1 mission launched in 2001.

<span class="mw-page-title-main">Lunar Reconnaissance Orbiter</span> NASA robotic spacecraft orbiting the Moon

The Lunar Reconnaissance Orbiter (LRO) is a NASA robotic spacecraft currently orbiting the Moon in an eccentric polar mapping orbit. Data collected by LRO have been described as essential for planning NASA's future human and robotic missions to the Moon. Its detailed mapping program is identifying safe landing sites, locating potential resources on the Moon, characterizing the radiation environment, and demonstrating new technologies.

<span class="mw-page-title-main">CryoSat-2</span> European Space Agency environmental research satellite

CryoSat-2 is a European Space Agency (ESA) Earth Explorer Mission that launched on April 8, 2010. CryoSat-2 is dedicated to measuring polar sea ice thickness and monitoring changes in ice sheets. Its primary objective is to measure the thinning of Arctic sea ice, but has applications to other regions and scientific purposes, such as Antarctica and oceanography.

<span class="mw-page-title-main">CryoSat-1</span> ESA satellite to study polar ice; lost in launch failure in 2005

CryoSat-1, also known as just CryoSat, was a European Space Agency satellite which was lost in a launch failure in 2005. The satellite was launched as part of the European Space Agency's CryoSat mission, which aims to monitor ice in the high latitudes. The second mission satellite, CryoSat-2, was successfully launched in April 2010.

<span class="mw-page-title-main">Operation IceBridge</span> Arctic research project by NASA

Operation IceBridge (OIB) was a NASA mission to monitor changes in polar ice. It is an airborne follow-on mission to the ICESat satellite, until after the ICESat-2 mission was launched in September 2018. OIB ended in 2019.

<span class="mw-page-title-main">Laser communication in space</span> Communication using lasers in outer space

Laser communication in space is the use of free-space optical communication in outer space. Communication may be fully in space or in a ground-to-satellite or satellite-to-ground application. The main advantage of using laser communications over radio waves is increased bandwidth, enabling the transfer of more data in less time.

Global Ecosystem Dynamics Investigation (GEDI, pronounced ) is a NASA mission to measure how deforestation has contributed to atmospheric CO2 concentrations. A full-waveform LIDAR was attached to the International Space Station to provide the first global, high-resolution observations of forest vertical structure. This will allow scientists to map habitats and biomass, particularly in the tropics, providing detail on the Earth's carbon cycle.

<span class="mw-page-title-main">NOAA-21</span> NASA/NOAA satellite

NOAA-21, designated JPSS-2 prior to launch, is the second of the United States National Oceanic and Atmospheric Administration (NOAA)'s latest generation of U.S. polar-orbiting, non-geosynchronous, environmental satellites called the Joint Polar Satellite System. NOAA-21 was launched on 10 November 2022 and join NOAA-20 and Suomi NPP in the same orbit. Circling the Earth from pole-to-pole, it will cross the equator about 14 times daily, providing full global coverage twice a day. It was launched with LOFTID.

<span class="mw-page-title-main">Sentinel-6 Michael Freilich</span> Earth observation satellite

The Sentinel-6 Michael Freilich (S6MF) or Sentinel-6A is a radar altimeter satellite developed in partnership between several European and American organizations. It is part of the Jason satellite series and is named after Michael Freilich. S6MF includes synthetic-aperture radar altimetry techniques to improve ocean topography measurements, in addition to rivers and lakes. The spacecraft entered service in mid 2021 and is expected to operate for 5.5 years.

References

  1. 1 2 Hill, Jeffrey (2 September 2011). "Orbital Sciences Grabs $135 Million NASA ICESat-2 Contract". Via Satellite. Retrieved 23 September 2018.
  2. 1 2 "IceSat-2: Measuring the Height of Earth's Ice from Space" (PDF). NASA. NP-2018-07-231-GSFC. Retrieved 9 September 2018.
  3. "Instrument: ATLAS" . Retrieved 25 August 2020.
  4. 1 2 3 Clark, Stephen (15 September 2018). "Early morning launch closes book on Delta 2 legacy spanning nearly 30 years". Spaceflight Now. Retrieved 16 September 2018.
  5. "Delta 2 to launch ICESat-2". United Launch Alliance. 2018. Retrieved 9 September 2018.
  6. 1 2 Graham, William (14 September 2018). "Delta II concludes amazing legacy with ICESat-2 launch". NASASpaceFlight.com. Retrieved 18 September 2018.
  7. 1 2 3 "How it Works". ICESat-2. NASA. Retrieved 9 March 2019.
  8. "ICESat-2 - Orbit". Heavens-Above . 8 March 2019. Retrieved 8 March 2019.
  9. "ICESAT-2". NASA. Retrieved 14 October 2011.
  10. "ICESat-2" (PDF). Orbital ATK. 2014. Archived from the original (PDF) on 25 October 2016.
  11. "First ICESat-2 Global Data Released: Ice, Forests and More | Icesat-2". icesat-2.gsfc.nasa.gov. Retrieved 2020-03-02.
  12. Abdalati, Waleed; Zwally, H. Jay; Bindschadler, Robert; Csatho, Bea; Farrell, Sinead Louise; Fricker, Helen Amanda; Harding, David; Kwok, Ronald; Lefsky, Michael; Markus, Thorsten; Marshak, Alexander (May 2010). "The ICESat-2 Laser Altimetry Mission". Proceedings of the IEEE. 98 (5): 735–751. doi:10.1109/jproc.2009.2034765. ISSN   0018-9219. S2CID   207020682.
  13. "How it Works | Icesat-2". icesat-2.gsfc.nasa.gov. Retrieved 2020-03-02.
  14. Ramsayer, Kate (28 February 2018). "NASA Space Laser Completes 2,000-mile Road Trip". NASA. Retrieved 14 October 2018.
  15. "NASA Selects United Launch Alliance's Workhorse Delta II Rocket for ICESat-2 Mission". United Launch Alliance. 22 February 2013. Retrieved 25 October 2016.
  16. Ramsayer, Kate (3 June 2014). "How NASA Builds a Space Laser". NASA. Retrieved 14 October 2018.
  17. 1 2 "NASA launches 'ICESat-2' laser altimeter". Optics.org. 17 September 2018. Retrieved 14 October 2018.
  18. "ICESat-2: Space Lasers". NASA. Retrieved 3 November 2016.
  19. Palm, Steve; Yang, Yeukui; Herzfeld, Ute (16 June 2018). "ICESat-2 Algorithm Theoretical Basis Document for the Atmosphere, Part I: Level 2 and 3 Data Products" (PDF). 7.5. NASA. pp. 8–12.
  20. Neuenschwander, Amy (June 2018). "Ice, Cloud and Land Elevation Satellite (ICESat-2): Algorithm Theoretical Basis Document (ATBD) for Land-Vegetation Along-track Products (ATL08)" (PDF).
  21. Ramsayer, Kate (3 November 2014). "NASA Lining up ICESat-2's Laser-catching Telescope". NASA. Retrieved 3 November 2016.
  22. Garner, Rob (2015-07-10). "About ICESat-2". NASA. Retrieved 2020-03-05.
  23. "How it Works". ICESat-2. NASA/Goddard Space Flight Center. Retrieved 21 February 2019.
  24. "NSIDC: ICESat-2". National Snow and Ice Data Center. Retrieved 3 November 2016.
  25. 1 2 "Science". ICESat-2. NASA. Retrieved 14 October 2018.
  26. "The ICESat-1 Mission: Level-1 Requirements and Mission Success Criteria" (PDF). 4.0. NASA. 8 July 2013. Retrieved 3 November 2016.
  27. Herzfeld, Ute Christina; McDonald, Brian W.; Wallin, Bruce F.; Neumann, Thomas A.; Markus, Thorsten; Brenner, Anita; Field, Christopher (April 2014). "Algorithm for Detection of Ground and Canopy Cover in Micropulse Photon-Counting Lidar Altimeter Data in Preparation for the ICESat-2 Mission". IEEE Transactions on Geoscience and Remote Sensing. 52 (4): 2109–2125. Bibcode:2014ITGRS..52.2109H. doi:10.1109/tgrs.2013.2258350. hdl: 2060/20150001451 . ISSN   0196-2892. S2CID   16402723.
  28. Leone, Dan (16 April 2014). "GAO Details Issues with ICESat-2 Sensor". Space News. Retrieved 16 March 2018.
  29. Leone, Dan (1 September 2014). "Paying for IceSat-2 Overruns Delays International Earth Science Launches". Space News. Retrieved 16 March 2018.
  30. Deamer, Kacey (19 May 2017). "NASA's IceBridge Mission Ends Its 'Best Year Ever'". Space.com. Retrieved 5 October 2018.
  31. "IceBridge - Aircraft, Instruments, Satellites". NASA. 22 June 2015. Retrieved 14 October 2018.
  32. "ICESat-2: Science Definition Team". NASA. 12 July 2017. Retrieved 19 April 2018.
  33. "ICESat-2: Applications". NASA. Retrieved 3 November 2016.
  34. "Lidar Applications for the Study of Ecosystems with Remote Sensing Laboratory". Texas A&M University. Archived from the original on 22 March 2018. Retrieved 19 April 2018.
  35. "ICESat-2 Science Team, 2020". NASA. Retrieved 6 June 2020.