IEC 61000-4-4

Last updated

IEC 61000-4-4 is the International Electrotechnical Commission's immunity standard based on electrical fast transient (EFT) / burst transients. This publication is part of the greater IEC 61000 group of standards which is covered under IEC TR 61000-4-1:2016. [1] The current third version of this standard (2012) replaces the second version (2004). [2] The goal of this standard is to establish a common and reproducible reference for evaluating the immunity of electrical and electronic equipment when subjected to electrical fast transient/bursts on supply, signal, control and earth ports. [3]

EFT test levels (IEC/EN 61000-4-4) [4]
Power ports, earth ports (PE)
LevelVoltage peak (kV)Repetition frequency (kHz)
1.5 kV5 or 100 kHz
21 kV5 or 100 kHz
32 kV5 or 100 kHz
44 kV5 or 100 kHz
xspecialspecial
x can be any level specified in product specific standards

Note: This tables purpose is a quick overview. It does not contain the same level of detail as the official IEC 61000-4-4.

The cause of electrical fast transients (EFT) come from an arc when mechanical contact is open due to a switching process. [5] Given the fast rise time and voltage of these pulses having a solid ground connection is important during the testing process. [6] Testing for EFT often requires a capacitive coupling clamp (CCL), which is employed to add disturbances to nominal signals. [7]

See also

Related Research Articles

<span class="mw-page-title-main">International Electrotechnical Commission</span> International standards organization

The International Electrotechnical Commission is an international standards organization that prepares and publishes international standards for all electrical, electronic and related technologies – collectively known as "electrotechnology". IEC standards cover a vast range of technologies from power generation, transmission and distribution to home appliances and office equipment, semiconductors, fibre optics, batteries, solar energy, nanotechnology and marine energy as well as many others. The IEC also manages four global conformity assessment systems that certify whether equipment, system or components conform to its international standards.

<span class="mw-page-title-main">Electromagnetic compatibility</span> Electrical engineering concept

Electromagnetic compatibility (EMC) is the ability of electrical equipment and systems to function acceptably in their electromagnetic environment, by limiting the unintentional generation, propagation and reception of electromagnetic energy which may cause unwanted effects such as electromagnetic interference (EMI) or even physical damage to operational equipment. The goal of EMC is the correct operation of different equipment in a common electromagnetic environment. It is also the name given to the associated branch of electrical engineering.

Conformance testing — an element of conformity assessment, and also known as compliance testing, or type testing — is testing or other activities that determine whether a process, product, or service complies with the requirements of a specification, technical standard, contract, or regulation. Testing is often either logical testing or physical testing. The test procedures may involve other criteria from mathematical testing or chemical testing. Beyond simple conformance, other requirements for efficiency, interoperability, or compliance may apply. Conformance testing may be undertaken by the producer of the product or service being assessed, by a user, or by an accredited independent organization, which can sometimes be the author of the standard being used. When testing is accompanied by certification, the products or services may then be advertised as being certified in compliance with the referred technical standard. Manufacturers and suppliers of products and services rely on such certification including listing on the certification body's website, to assure quality to the end user and that competing suppliers are on the same level.

<span class="mw-page-title-main">Electromagnetic interference</span> Disturbance in an electrical circuit due to external sources of radio waves

Electromagnetic interference (EMI), also called radio-frequency interference (RFI) when in the radio frequency spectrum, is a disturbance generated by an external source that affects an electrical circuit by electromagnetic induction, electrostatic coupling, or conduction. The disturbance may degrade the performance of the circuit or even stop it from functioning. In the case of a data path, these effects can range from an increase in error rate to a total loss of the data. Both human-made and natural sources generate changing electrical currents and voltages that can cause EMI: ignition systems, cellular network of mobile phones, lightning, solar flares, and auroras. EMI frequently affects AM radios. It can also affect mobile phones, FM radios, and televisions, as well as observations for radio astronomy and atmospheric science.

IEC 61850 is an international standard defining communication protocols for intelligent electronic devices at electrical substations. It is a part of the International Electrotechnical Commission's (IEC) Technical Committee 57 reference architecture for electric power systems. The abstract data models defined in IEC 61850 can be mapped to a number of protocols. Current mappings in the standard are to Manufacturing Message Specification (MMS), GOOSE [see section 3, Terms and definitions, term 3.65 on page 14], SV or SMV, and soon to web services. In the previous version of the standard, GOOSE stood for "Generic Object Oriented Substation Event", but this old definition is still very common in IEC 61850 documentation. These protocols can run over TCP/IP networks or substation LANs using high speed switched Ethernet to obtain the necessary response times below four milliseconds for protective relaying.

The Comité International Spécial des Perturbations Radioélectriques was founded in 1934 to set standards for controlling electromagnetic interference in electrical and electronic devices and is a part of the International Electrotechnical Commission (IEC).

IEC 61131 is an IEC standard for programmable controllers. It was first published in 1993; the current (third) edition dates from 2013. It was known as IEC 1131 before the change in numbering system by IEC. The parts of the IEC 61131 standard are prepared and maintained by working group 7, programmable control systems, of subcommittee SC 65B of Technical Committee TC65 of the IEC.

<span class="mw-page-title-main">Transient response</span> Response of a system to a change from an equilibrium state

In electrical engineering and mechanical engineering, a transient response is the response of a system to a change from an equilibrium or a steady state. The transient response is not necessarily tied to abrupt events but to any event that affects the equilibrium of the system. The impulse response and step response are transient responses to a specific input.

A quasi-peak detector is a type of electronic detector or rectifier. Quasi-peak detectors for specific purposes have usually been standardized with mathematically precisely defined dynamic characteristics of attack time, integration time, and decay time or fall-back time.

In electrical power engineering, fault ride through (FRT), sometimes under-voltage ride through (UVRT), or low voltage ride through (LVRT), is the capability of electric generators to stay connected in short periods of lower electric network voltage. It is needed at distribution level to prevent a short circuit at HV or EHV level from causing a widespread loss of generation. Similar requirements for critical loads such as computer systems and industrial processes are often handled through the use of an uninterruptible power supply (UPS) or capacitor bank to supply make-up power during these events.

<span class="mw-page-title-main">ESD simulator</span>

An ESD simulator, also known as an ESD gun, is a handheld unit used to test the immunity of devices to electrostatic discharge (ESD). These simulators are used in special electromagnetic compatibility (EMC) laboratories. ESD pulses are fast, high-voltage pulses created when two objects with different electrical charges come into close proximity or contact. Recreating them in a test environment helps to verify that the device under test is immune to static electricity discharges.

IEC 60204-1 / EN 60204 Safety of machinery – Electrical equipment of machines – Part 1: General requirements

IEC 61000-3-2Electromagnetic compatibility (EMC) – Part 3-2: Limits – Limits for harmonic current emissions is an international standard that limits mains voltage distortion by prescribing the maximum value for harmonic currents from the second harmonic up to and including the 40th harmonic current. IEC 61000-3-2 applies to equipment with a rated current up to 16 A – for equipment above 16 A see IEC 61000-3-12.

IEC 61000-4-5 is an international standard by the International Electrotechnical Commission on surge immunity. In an electrical installation, disruptive surges can appear on power and data lines. Their sources include abrupt load switching and faults in the power system, as well as induced lightning transients from an indirect lightning strike. It necessitates the test of surge immunity in electrical or electronic equipment. IEC 61000-4-5 defines test set-up, procedures, and classification levels.

IEC 61000-4-2 is the International Electrotechnical Commission's immunity standard on electrostatic discharge (ESD). The publication is one of the basic EMC standards of the IEC 61000–4 series. The European equivalent of the standard is called EN 61000-4-2. The current version of the IEC standard is the second edition dated 2008-12-09. The basic standards (61000-4) are usually called by product or family specific standards, which use these basic standards as a common reference.

In visual perception, flicker is a human-visible change in luminance of an illuminated surface or light source which can be due to fluctuations of the light source itself, or due to external causes such as due to rapid fluctuations in the voltage of the power supply or incompatibility with an external dimmer.

ISO 7637 Road vehicles -- Electrical disturbances from conduction and coupling is an international electromagnetic compatibility vehicle standard published by the International Organization for Standardization (ISO), that relates to 12 and 24 volt electrical systems. As of November 2018, four parts of ISO 7637 have been published, and one is in development :

References

  1. "IEC TR 61000-4-1:2016 - IEC Webstore - electromagnetic compatibility, EMC, smart city". webstore.iec.ch.
  2. "IEC 61000-4-4:2012 - IEC Webstore - electromagnetic compatibility, EMC, smart city, rural electrification". webstore.iec.ch.
  3. "IEC 61000-4-4 Fast Transient/Burst Testing Lab with EMC / EMI Experts". Keystone Compliance.
  4. IEC 61000-4-2 (3.0 ed.). International Electrotechnical Commission (IEC). December 2008. p. 11. ISBN   978-0-58069-361-8.
  5. "Teseq: IEC/EN 61000-4-4". www.teseq.com.
  6. "EN IEC 61000-4-4 - EFT/Burst Immunity Generator Rentals". Transient Specialists.
  7. "Modeling the IEC 61000-4-4 EFT injection clamp - Request PDF". ResearchGate.