IEC 61000-4-5

Last updated

IEC 61000-4-5 is an international standard by the International Electrotechnical Commission on surge immunity. In an electrical installation, disruptive surges can appear on power and data lines. Their sources include abrupt load switching and faults in the power system, and induced lightning transients from an indirect lightning strike (direct lightning is out of scope in this standard). It necessitates the test of surge immunity in electrical or electronic equipment. IEC 61000-4-5 defines test set-up, procedures, and classification levels.

Contents

In particular, it standardizes the required surge voltage and current waveforms for laboratory testing, with the "1.2/50-8/20 μs" impulse being the most frequently used surge waveform. Although this standard is designed for testing equipment as a whole at system level, not for individual protection devices, in practice this surge waveform is often also used for rating Transient Voltage Suppressors (TVS), Gas Discharge Tubes (GDT), Metal Oxide Varistors (MOV), and other surge protection devices.

The current version is Third Edition (2014), amended in 2017. [1]

Test Setup

Two major components are defined in this standard: two types of Combination Wave Generators (CWG) and various Coupling/Decoupling Networks (CDN) depending on the test level and type.

First, a Combination Wave Generator is a standardized impulse generator (sometimes also referred to as a lightning surge generator), it's used for producing simulated, standard voltage and current surges under laboratory conditions. Subsequently, the surge is transmitted into a port of the Device-Under-Test (DUT) via a coupling network. Finally, to prevent surges from reaching other devices via the power system during the test, a decoupling network is also inserted between the power line and the DUT.

Surge Waveforms

The surge is defined by the Combination Wave Generator's open-circuit voltage and short-circuit current waveforms, characterized by front time, duration, and peak values. With an open circuit output, the surge voltage is a double exponential pulse in the form of . With a short circuit output, the surge current waveform is an underdamped sine wave. The ratio between the peak open-circuit voltage and the peak short-circuit current is 2, giving an effective output impedance of 2 Ω.

IEC-61000-4-5-open-circuit-voltage.svg
Open-Circuit Voltage
IEC-61000-4-5-short-circuit-current.svg
Short-Circuit Current

Usually, the voltage waveform has a 1.2 μs front time and a 50 μs duration, and the current waveform has a 8 μs front time and 20 μs duration. This is the most commonly used surge waveform for most applications, often referred to as a "1.2/50-8/20 μs" surge.

Alternatively, for outdoor telecommunication networks that experience a higher surge level, the standard also defines a more energetic generator with a 10/700 μs voltage waveform and a 5/320 μs current waveform.

Front time and duration are not measured directly, but as virtual parameters derived from measurements. For open-circuit voltage, front time is defined to be 1.67 times the 30%-90% rise time, duration is defined as the time interval between the 50% point of its rising edge and the 50% point of its falling edge. For short-circuit current, front time is defined to be 1.25 times the 10%-90% rise time, duration is defined as 1.18 times time interval between the 50% point of its rising edge and the 50% point of its falling edge.

At the output of the generator, a 30% undershoot below zero is allowed. There's no overshoot or overshoot limit at the output of the Coupling Network.

Comparison with different standards

IEC 60060-1

It's worth noting that both "1.2/50 μs" voltage and "8/20 μs" current impulses are classic waveforms with a well-established history of use in high-voltage testing for electric power transmission. [2] Thus, these waveforms are also defined by IEC 60060-1 "High-Voltage Test Techniques" and other standards in this context. In fact, the waveform definitions in IEC 61000-4-5 were originally based on IEC 60060-1. [3] [4]

Nevertheless, there are important differences. In traditional high-voltage testing, voltage and current impulses are tested separately, not in combination. The "1.2/50 μs" generator is designed for insulation testing, and produces a high-voltage, low-current impulse into a high-impedance load. The output current of this generator is on the milliampere scale. [2] [5] The "8/20 μs" generator is designed for surge arrester testing, and produces a high-current surge into a low-impedance load. [2] On the other hand, modern electronic devices can be high and low-impedance loads simultaneously due to non-linear devices, protection circuits, and arcing in a dielectric breakdown. As a result, it motivated the creation of the Combination Wave Generator with the ability to generate a high-voltage, high-current output during the same surge. [2] In addition, both standards have different waveform tolerances [6] and other technical requirements. Thus, IEC 61000-4-5 is not to be confused with IEC 60060-1 and other high-voltage tests that also use a "1.2/50 μs" or "8/20 μs" impulse. [5]

IEC 61000-4-5 Ed. 2 and Ed. 3

When a Coupling Network is used, past experience has shown inconsistent waveforms between different generators. Thus, an important change in IEC 61000-4-5 Ed. 3 is that a Combination Wave Generator must be verified only with a 18 μF capacitor attached at the output. This causes a significant impact to the short-circuit current waveform. If the generator is to be designed without the coupling capacitor in mind, the output would no longer be standard compliant. [7]

Third Edition also simplified waveform definitions. The earlier standard contained two definitions of "1.2/50-8/20 μs" waveform parameters, based on either IEC 60060-1 or IEC 60469-1, and two definitions of "10/700-5/320 μs" waveform parameters, based on either IEC 60060-1 or ITU-T K series. Ed. 3 removed references to these standards and gives standalone definitions. [3] [4] Especially, front time has been redefined in terms of rise time, rather than a time interval from an extrapolated "virtual origin" using IEC 60060-1's approach. This allows one to use the built-in measurement feature on an oscilloscope, simplifying test procedures. For practical purposes, the differences between both definitions are negligible. [7] However, because the new definition was created using IEC 60060-1 as its basis, a generator calibrated according to IEC 60469-1's definitions may no longer be standard compliant. [4]

Circuit Analysis

1.2/50-8/20 μs Generator

Simplified Schematic of the 1.2/50-8/20 ms Combination Wave Generator IEC-61000-4-5 Simplified Circuit Diagram of the 1.2-50 us Combination Wave Generator.svg
Simplified Schematic of the 1.2/50-8/20 μs Combination Wave Generator

The Combination Wave Generator is essentially a capacitor discharge circuit. Initially, the switch is open, a high voltage source charges the energy-storage capacitor through a current-limiting resistor . The switch is then closed to deliver an impulse to the load through a pulse-forming network, which consists of a rise time shaping inductor , two impulse duration shaping resistors and , and an impedance matching resistor .

The standard does not specify component values or practical circuits, any suitable design that conforms to the standard requirements can be used.

A complete circuit analysis of the ideal surge generator, including design equations and component values, is available in the presentation Introduction To Voltage Surge Immunity Testing by Hesterman et, al. [8] An updated derivation for the Third Edition is given in the paper Elementary and ideal equivalent circuit model of the 1,2/50-8/20 μs combination wave generator by Carobbi et, al. [7]

Design Equations

The following design equations are derived by Carobbi et, al. In these equations, the charging voltage is , and the components are , , , , and . [7]

Open-Circuit Voltage

For open-circuit voltage, its Laplace transform is:

 

 

 

 

(1)

Where:

 

 

 

 

(2)

 

 

 

 

(3)

Thus, open-circuit voltage is a double exponential waveform:

 

 

 

 

(4)

The voltage reaches its peak value at:

 

 

 

 

(5)

And the peak voltage is:

 

 

 

 

(6)

Short-Circuit Current

When the output is shorted, note that the last resistor ( in the schematic) is effectively removed.

For short-circuit current, its Laplace transform is:

 

 

 

 

(7)

Where:

 

 

 

 

(8)

 

 

 

 

(9)

 

 

 

 

(10)

Thus, short-circuit current is a damped sine wave:

 

 

 

 

(11)

The current reaches its peak value at:

 

 

 

 

(12)

And the peak current is:

 

 

 

 

(13)

Solution

Ignore the amplitude in 4 , it becomes:

 

 

 

 

(14)

By substituting :

 

 

 

 

(15)

The ratio should be selected to make 's waveform have a duration over front-time ratio of . By numerically evaluating 's waveform (including its front time and duration) while varying this ratio, the solution is found to be . Next, and are computed by numerically varying until 14 's waveform has a front time of 1.2 μs. The solution is = 68.2 μs. Therefore, = 0.4 μs.

Ignore the amplitude in 11 , it becomes:

 

 

 

 

(16)

By substituting :

 

 

 

 

(17)

The value should be selected to make 's waveform have a duration over front time ratio of . By numerically evaluating 's waveform (including its front time and duration) while varying , the solution is found to be . Next, is computed by varying it numerically until 16 's waveform has a duration of 20 μs. With the correct duration, front time is also automatically satisfied. The solution is .

Once , , and are solved, the circuit component values can be obtained, is derived first.

Note that the effective output impedance is (by dividing 6 by 13 ):

 

 

 

 

(18)

And can be rearranged as:

 

 

 

 

(19)

Set output impedance = 2 Ω, the solution is = 26.1 Ω.

Finally, the closed-form solution of other component values is:

 

 

 

 

(20)

 

 

 

 

(21)

 

 

 

 

(22)

 

 

 

 

(23)

The solution is = 5.93 μF, = 10.9 μH, = 20.2 Ω, and = 0.814 Ω.

Output peak voltage is slightly lower than the charging voltage. To scale the voltage, use the amplitude in 4 and set E = 1, this yields . Thus, the capacitor charging voltage is times the output peak voltage.

Note that this solution doesn't consider the coupling capacitor, and also has an undershoot of . The solution to both problems are discussed in the following sections.

Coupling Capacitor

An extra 18 μF series coupling capacitor has almost no effect on the open-circuit voltage, but affects short-circuit current significantly.

Carobbi et, al. suggested the following iterative, trial-and-error design procedure to take the effect of the series coupling capacitor into account. First, without considering the capacitor, the original circuit analysis is reused, and circuit components values are obtained through a numerical solver. Next, the capacitor is added and the change of short-circuit waveform is noted. Then, the target waveform parameters for the numerical solver are "pre-distorted", obtaining a new set of component values (by changing front time, duration, and effective output impedance). For example, if the peak current becomes too low, component values are recalculated for a higher peak current by adjusting the effective output impedance target. These steps are repeated until the desired waveform is obtained. Convergence is achievable after two iterations. [7]

Results

Ideal Component Values
Ed.18 μF
Series
Capacitor
Charging
Voltage
(V)

(μF)

(μH)

(Ω)

(Ω)

(Ω)
Current
Undershoot
(%)
By
2No10826.0410.40.94125.119.827.4Hesterman, et. al. [8]
3No10605.9310.90.81420.226.134Carobbi et, al. [7]
3Yes10639.9810.70.8329.3925.539Carobbi et, al. [7]

Both sources showed that it's not possible to exactly meet the waveform requirements without violating the 30% short-circuit current overshoot limit. Nevertheless, Hesterman, et. al. presented an approximate solution by adjusting the waveform parameters within tolerance. [8] The derivation by Carobbi et, al. ignored the undershoot requirement, pointing out that a practical circuit may reduce overshoot to even practically zero in some cases if an unidirectional switch is used. [7] Also, IEC 61000-4-5 states that there's no overshoot or undershoot requirement at the output of a coupling network.

These solutions are only valid for an ideal generator, suitable for circuit simulation. It can be used as a starting point of practical generator design, but component values have to be adjusted further due to switch non-idealities. In an ideal circuit, open-circuit voltage rise time is governed by the time constant , but a practical switch may cause rise time degradation. Further, due to the use of different switch types, a real generator may produce either a bidirectional impulse with undershoot, or an unidirectional impulse without undershoot. An ideal circuit model cannot predict these non-linear effects, and should not be treated as a complete circuit model of practical generators. [7]

10/700-5/320 μs Generator

A different Combination Wave Generator is used for the 10/700-5/320 μs surge.

Simplified Schematic of the 10/700-5/320 ms Combination Wave Generator IEC-61000-4-5 Simplified Circuit Diagram of the 10-700 us Combination Wave Generator.svg
Simplified Schematic of the 10/700-5/320 μs Combination Wave Generator

Test Levels

The following table shows the peak open-circuit voltage and short-circuit current of the Combination Wave Generator.

Electrical Surge Test Levels (IEC/EN 61000-4-5)
ClassTest Level
(V)
Max Peak Current @ 2 Ω
(A)
1500250
21000500
320001000
440002000
XSpecialSpecial
X can be any level specified in product specific standards.
It can be above, below or between the others.

The full current is not always actually applied to the DUT. Depending on the test setup and port type, an additional resistor may be used as a part of the coupling network to reduce the peak surge current into the DUT, raising the output impedance to 12 Ω or 42 Ω.

See also

Related Research Articles

<span class="mw-page-title-main">Multivibrator</span> Electronic circuit used to implement two-state devices

A multivibrator is an electronic circuit used to implement a variety of simple two-state devices such as relaxation oscillators, timers, and flip-flops. The first multivibrator circuit, the astable multivibrator oscillator, was invented by Henri Abraham and Eugene Bloch during World War I. It consisted of two vacuum tube amplifiers cross-coupled by a resistor-capacitor network. They called their circuit a "multivibrator" because its output waveform was rich in harmonics. A variety of active devices can be used to implement multivibrators that produce similar harmonic-rich wave forms; these include transistors, neon lamps, tunnel diodes and others. Although cross-coupled devices are a common form, single-element multivibrator oscillators are also common.

<span class="mw-page-title-main">Power factor</span> Ratio of active power to apparent power

In electrical engineering, the power factor of an AC power system is defined as the ratio of the real power absorbed by the load to the apparent power flowing in the circuit. Real power is the average of the instantaneous product of voltage and current and represents the capacity of the electricity for performing work. Apparent power is the product of RMS current and voltage. Due to energy stored in the load and returned to the source, or due to a non-linear load that distorts the wave shape of the current drawn from the source, the apparent power may be greater than the real power, so more current flows in the circuit than would be required to transfer real power alone. A power factor magnitude of less than one indicates the voltage and current are not in phase, reducing the average product of the two. A negative power factor occurs when the device generates real power, which then flows back towards the source.

Electrical impedance Opposition of a circuit to a current when a voltage is applied

In electrical engineering, impedance is the opposition to alternating current presented by the combined effect of resistance and reactance in a circuit.

A resistor–capacitor circuit, or RC filter or RC network, is an electric circuit composed of resistors and capacitors. It may be driven by a voltage or current source and these will produce different responses. A first order RC circuit is composed of one resistor and one capacitor and is the simplest type of RC circuit.

Electrolytic capacitor Type of capacitor

An electrolytic capacitor is a polarized capacitor whose anode or positive plate is made of a metal that forms an insulating oxide layer through anodization. This oxide layer acts as the dielectric of the capacitor. A solid, liquid, or gel electrolyte covers the surface of this oxide layer, serving as the cathode or negative plate of the capacitor. Due to their very thin dielectric oxide layer and enlarged anode surface, electrolytic capacitors have a much higher capacitance-voltage (CV) product per unit volume than ceramic capacitors or film capacitors, and so can have large capacitance values. There are three families of electrolytic capacitor: aluminum electrolytic capacitors, tantalum electrolytic capacitors, and niobium electrolytic capacitors.

In electrical engineering, partial discharge (PD) is a localized dielectric breakdown (DB) of a small portion of a solid or fluid electrical insulation (EI) system under high voltage (HV) stress. While a corona discharge (CD) is usually revealed by a relatively steady glow or brush discharge (BD) in air, partial discharges within solid insulation system are not visible.

A Colpitts oscillator, invented in 1918 by American engineer Edwin H. Colpitts, is one of a number of designs for LC oscillators, electronic oscillators that use a combination of inductors (L) and capacitors (C) to produce an oscillation at a certain frequency. The distinguishing feature of the Colpitts oscillator is that the feedback for the active device is taken from a voltage divider made of two capacitors in series across the inductor.

Inrush current Maximal instantaneous input current drawn by an electrical device when first turned on

Inrush current, input surge current, or switch-on surge is the maximal instantaneous input current drawn by an electrical device when first turned on. Alternating-current electric motors and transformers may draw several times their normal full-load current when first energized, for a few cycles of the input waveform. Power converters also often have inrush currents much higher than their steady-state currents, due to the charging current of the input capacitance. The selection of over-current-protection devices such as fuses and circuit breakers is made more complicated when high inrush currents must be tolerated. The over-current protection must react quickly to overload or short-circuit faults but must not interrupt the circuit when the inrush current flows.

AC power Power in alternating current systems

In an electric circuit, instantaneous power is the time rate of flow of energy past a given point of the circuit. In alternating current circuits, energy storage elements such as inductors and capacitors may result in periodic reversals of the direction of energy flow. Its SI unit is the watt.

Capacitor types Customary components for use in electronic equipment

Capacitors are manufactured in many forms, styles, lengths, girths, and from many materials. They all contain at least two electrical conductors separated by an insulating layer. Capacitors are widely used as parts of electrical circuits in many common electrical devices.

Q meter

A Q meter is a piece of equipment used in the testing of radio frequency circuits. It has been largely replaced in professional laboratories by other types of impedance measuring devices, though it is still in use among radio amateurs. It was developed at Boonton Radio Corporation in Boonton, New Jersey in 1934 by William D. Loughlin.

Current divider

In electronics, a current divider is a simple linear circuit that produces an output current (IX) that is a fraction of its input current (IT). Current division refers to the splitting of current between the branches of the divider. The currents in the various branches of such a circuit will always divide in such a way as to minimize the total energy expended.

In electronics, the Miller effect accounts for the increase in the equivalent input capacitance of an inverting voltage amplifier due to amplification of the effect of capacitance between the input and output terminals. The virtually increased input capacitance due to the Miller effect is given by

Ripple in electronics is the residual periodic variation of the DC voltage within a power supply which has been derived from an alternating current (AC) source. This ripple is due to incomplete suppression of the alternating waveform after rectification. Ripple voltage originates as the output of a rectifier or from generation and commutation of DC power.

<span class="mw-page-title-main">Ceramic capacitor</span> Fixed-value capacitor using ceramic

A ceramic capacitor is a fixed-value capacitor where the ceramic material acts as the dielectric. It is constructed of two or more alternating layers of ceramic and a metal layer acting as the electrodes. The composition of the ceramic material defines the electrical behavior and therefore applications. Ceramic capacitors are divided into two application classes:

Tantalum capacitor

A tantalum electrolytic capacitor is an electrolytic capacitor, a passive component of electronic circuits. It consists of a pellet of porous tantalum metal as an anode, covered by an insulating oxide layer that forms the dielectric, surrounded by liquid or solid electrolyte as a cathode. Because of its very thin and relatively high permittivity dielectric layer, the tantalum capacitor distinguishes itself from other conventional and electrolytic capacitors in having high capacitance per volume and lower weight.

Film capacitor Electrical capacitor with an insulating plastic film as the dielectric

Film capacitors, plastic film capacitors, film dielectric capacitors, or polymer film capacitors, generically called film caps as well as power film capacitors, are electrical capacitors with an insulating plastic film as the dielectric, sometimes combined with paper as carrier of the electrodes.

IEC 61000-3-2Electromagnetic compatibility (EMC) – Part 3-2: Limits – Limits for harmonic current emissions is an international standard that limits mains voltage distortion by prescribing the maximum value for harmonic currents from the second harmonic up to and including the 40th harmonic current. IEC 61000-3-2 applies to equipment with a rated current up to 16 A – for equipment above 16 A see IEC 61000-3-12.

Aluminum electrolytic capacitor Type of capacitor

Aluminium capacitors are polarized electrolytic capacitors whose anode electrode (+) is made of a pure aluminum foil with an etched surface. The aluminum forms a very thin insulating layer of aluminium oxide by anodization that acts as the dielectric of the capacitor. A non-solid electrolyte covers the rough surface of the oxide layer, serving in principle as the second electrode (cathode) (-) of the capacitor. A second aluminum foil called “cathode foil” contacts the electrolyte and serves as the electrical connection to the negative terminal of the capacitor.

IEC 61000-4-2 is the International Electrotechnical Commission's immunity standard on Electrostatic Discharge (ESD). The publication is one of the basic EMC standards of the IEC 61000–4 series. The European equivalent of the standard is called EN 61000-4-2. The current version of the IEC standard is the second edition dated 2008-12-09. The basic standards (61000-4) are usually called by product or family specific standards, which use these basic standards as a common reference.

References

  1. "IEC 61000-4-5:2014+AMD1:2017 CSV Consolidated version - Electromagnetic compatibility (EMC) - Part 4-5: Testing and measurement techniques - Surge immunity test" . webstore.iec.ch. International Electrotechnical Commission. 2017.
  2. 1 2 3 4 Richman, Peter (1983). Single-Output, Voltage and Current Surge Generation for Testing Electronic Systems . 1983 IEEE International Symposium on Electromagnetic Compatibility. IEEE.
  3. 1 2 Niechcial, Frank (2020). Technical Note 0107: Burst and Surge, Summary of Changes to the Standard (PDF) (Technical report). Ametek CTS GmbH.
  4. 1 2 3 IEC 61000-4-5 第3版 改訂発行の対応とその改訂詳細について (PDF) (Technical report) (in Japanese). NoiseKen. 2014-05-29.
  5. 1 2 Rowe, Martin (2011-12-16). "Standards define test impulses, mostly". EDN .
  6. G.P. Fotis; I.F. Gonos; I.A. Stathopulos (2004). Simulation and Experiment for Surge Immunity According to EN 61000-4-5 (PDF) (Technical report). National Technical University of Athens.
  7. 1 2 3 4 5 6 7 8 9 Carlo F. M. Carobbi; Alessio Bonci (2013). "Elementary and ideal equivalent circuit model of the 1,2/50-8/20 μs combination wave generator" . IEEE Electromagnetic Compatibility Magazine. IEEE. 2 (4): 51-57. doi:10.1109/MEMC.2013.6714698. S2CID   44247646.
  8. 1 2 3 Hesterman, Bryce; Powell, Douglas (2007-09-18). Introduction To Voltage Surge Immunity Testing (PDF). IEEE Power Electronics Society Denver Chapter Meeting.