ILC Dover

Last updated
ILC Dover
Founded1947  OOjs UI icon edit-ltr-progressive.svg
Headquarters
Website www.ilcdover.com
EMU suit worn during EVA on the International Space Station STS-118 EVA EMU Suit.jpg
EMU suit worn during EVA on the International Space Station

ILC Dover, LP is a special engineering development and manufacturing company, globally headquartered in Frederica, Delaware. ILC Dover specializes in the use of high-performance flexible materials, serving the aerospace, personal protection, and pharmaceutical industries.

Contents

Best known for making space suits for NASA, ILC Dover outfitted every United States astronaut in the Apollo program, including the twelve that walked on the Moon. ILC also designed and manufactured the Space Suit Assembly portion of the Extravehicular Mobility Unit (EMU) developed by Collins Aerospace, worn by astronauts during performance of extra-vehicular activity (EVA) on Space Shuttle missions and on the International Space Station.

Other ILC Dover products include the airbag landing devices for Mars Pathfinder and Mars Exploration Rover (MER) missions; lighter-than-air vehicles, including airships, aerostats, and zeppelins; chemical, biological, radiological, and nuclear (CBRN) masks and hood systems; and flexible powder-containment solutions for the pharmaceutical industry.[ citation needed ]

History

ILC Dover initially formed as a branch of the International Latex Corporation, the company founded in 1932 by Abram Spanel and later known as Playtex best known for manufacture of women's undergarments. The International Latex Corporation supported American efforts in World War II with latex products such as attack boats, life rafts, and canteens. In 1947, the International Latex Corporation split into four divisions, one of which, the Metals Division, eventually became ILC Dover. [2] [3]

Located at that time in Dover, Delaware, ILC's earliest work was on high-altitude pressure helmets and high-altitude pressure suits for the U.S Navy and Air Force. In 1965, ILC (then known as the Government and Industrial Division of the International Latex Corporation) was awarded the prime contract for the Apollo Lunar Space Suit, based on its unique approach to designing flexible joints in air filled suits. [4] ILC successfully designed and manufactured the suit worn by astronauts in the Apollo program, including Neil Armstrong during the first moonwalk. By 1969, ILC's workforce expanded to 900 employees as it supported the space program through production of Apollo space suits and a sun shield to protect Skylab, the first U.S. space station. [2] [5]

M40 Gas Mask M40 gasmask.jpg
M40 Gas Mask

In 1974, the Skylab program ended, and ILC faced an immediate need to diversify their product offerings. That same year, ILC delivered its first aerostat to the U.S. Air Force for use at Cudjoe Key Air Force Station. [2] Subsequently, they entered the field of personal protective equipment, paving the way for development of industrial protection suits, such as the Chemturion suit line. In later years, their development of protective equipment expanded into type classified military chemical, biological, radiological, and nuclear (CBRN) masks and hood systems (for example, the M43, M40, MBU-19/P). The M40/M42 masks became the standard field mask of the U.S. Army, and, as of 2010, over two million had been produced and sold. [5] [6] [7] Hamilton Standard, of Windsor Locks, CT was contracted to oversee ILC's suit manufacture due to ILC's inexperience with federal government contracts. [8]

In 1977, ILC Dover, in conjunction with Hamilton Standard, began development and manufacture of the Extravehicular Mobility Unit (EMU), the suit worn by astronauts during Space Shuttle and Space Station extra-vehicular activity (EVA). ILC continued its support of the space program, while expanding its personal protection and lighter-than-air (LTA) vehicle lines. [4] [5]

Mars Exploration Rover Opportunity airbag on the surface of Mars Challenger Memorial Station At Meridiani Planum.jpg
Mars Exploration Rover Opportunity airbag on the surface of Mars

In 1994 and 1995, ILC was awarded contracts with the German company Zeppelin Luftschifftechnik GmbH and the American Blimp Corporation for production of envelopes for each company. Over the following decade, ILC's production of LTA vehicles continued, and in 2001, ILC, in collaboration with TCOM and Uretek, developed and manufactured the world's largest pressurized LTA vehicle for CargoLifter in Brand, Germany. [2] [9] [10]

In 1994, NASA's Jet Propulsion Laboratory contracted ILC to develop and manufacture the airbag landing system for the Mars Pathfinder mission, which successfully cushioned Pathfinder's landing on July 4, 1997. In 2003, ILC's airbag system enabled the safe landing of the twin rovers, Spirit and Opportunity , during the Mars Exploration Rover (MER) missions. [4] [6] [11]

In the 1990s ILC entered the pharmaceutical industry with the design and production of flexible containment systems, used to improve operator safety and ensure product purity during the manufacturing processing of potent pharmaceutical agents. [4] [12]

Space suits

Apollo Spacesuit worn by Buzz Aldrin Buzz Aldrin Apollo Spacesuit.jpg
Apollo Spacesuit worn by Buzz Aldrin
Z-1 Spacesuit Prototype - kneeling Nov 2012 Z-1 Spacesuit Prototype - kneeling Nov 2012.jpg
Z-1 Spacesuit Prototype - kneeling Nov 2012

Since the beginning of the Apollo Program, ILC has been the designer and producer of the space suit pressure garment for NASA. Throughout Apollo, Skylab, Space Shuttle, and Space Station missions, the space suit has been required to protect astronauts from hazards faced in Earth's orbit and on the surface of the Moon. These hazards include the vacuum environment of space, temperature extremes ranging from -250 degrees Fahrenheit to 250 degrees Fahrenheit, the impact of micrometeoroids and orbital debris, and lunar dust. Above the 63,000 foot threshold, spacesuits are needed to supply oxygen and to provide a pressurized environment around the body to keep body fluids in a liquid state. [13]

Apollo and Skylab

ILC began delivering spacesuits for the Apollo program in 1966. Initial deliveries of suits did not perform well in tests and NASA initially cancelled its contract with ILC and Hamilton Standard. [8] NASA relaunched the program to develop a spacesuit for the Apollo program experimenting at first with hard suits. ILC and Hamilton Standard submitted competing designs this time with ILC winning the sole contract based on its flexible, close-fitting design which featured water cooled undergarment, a blue inner pressurized layer, and covered in a white nylon layer to protect the suits from rocks. Hamilton received a separate contract for the life support backpack unit. ILC was further challenged after the Apollo 1 fire to remove all flammable material from space suits. After a nationwide search, ILC settled on beta cloth, a fireproof silica fiber cloth. [8] [14] Apollo spacesuits were custom-made for each of the astronauts in the program, and for each of the twelve crewed flights carried out, ILC produced fifteen suits. Three suits were made for each of the three astronauts comprising the crew (one suit for flight, one for training, one for back-up) and two suits were made for each of the three back-up crew members (one suit for flight and one for training). Twenty extra-vehicular activities (EVAs) were performed during the Apollo program, and ten were performed during Skylab. The Apollo suits were used for a total of 160 hours on the lunar surface. [13] [15] [16]

Space Shuttle

The space suit used for EVA during Space Shuttle missions is the Extravehicular Mobility Unit (EMU), which has two parts: the space suit assembly (SSA), manufactured by ILC, and the life support system (LSS), manufactured by Hamilton Sundstrand (previously Hamilton Standard). The SSA is made of individual components which are assembled to fit each astronaut. Since the first shuttle EVA in 1983, 216 U.S. astronauts have performed a total of 74 shuttle EVAs, combining for greater than 470 hours in space. [13] [15] [16]

International Space Station

The shuttle EMU was improved for use on the International Space Station (ISS). The suits for the ISS were modified to provide greater mobility, to afford better tactile capabilities of the glove, and to provide an increased operational life. As of February 2011, a total of 104 EVAs on the ISS had occurred, for greater than 650 total hours in space. [15] [16]

Mark III

The Mark III (MKIII) is an experimental suit that was designed by ILC for use on the space station. The suit is a combination of hard and soft elements, designed for pressurization to 8.3 psi (57 kPa). Shuttle suits are pressurized to 4.3 psi (30 kPa), and astronauts are required to breathe pure oxygen for several hours prior to EVA to remove all dissolved nitrogen from body fluids (to prevent "the bends" upon de-pressurization). Pressurization to 8.3 psi (57 kPa) would eliminate the need for a lengthy pre-breathing time. The Mk III has since been used in test programs that study space suit operations in the lunar and Mars surface environments. [13] [15]

Lunar and Mars suit prototype (I Suit)

The I-Suit is a lightweight experimental suit designed and manufactured by ILC to be used for high-mobility surface operations in gravity, such as on the lunar surface or on the surface of Mars. The I-suit is also being studied for use with next generation NASA launch vehicles and commercial space vehicles. [15]

Z-1 Prototype Suit

ILC continues in their space suit innovation [15] with the development of the Z-1 Suit for NASA [17] Designed and manufactured at ILC Dover's Houston [18] facility. The Z-1 is the first suit to be successfully integrated into a suit-port dock mechanism eliminating the need for an air lock; and reducing the consumable demands on long term missions.

Lighter than air structures

Lighter-Than-Air Zeppellin NT amk.JPG
Lighter-Than-Air

Since the early 1970s, ILC has been designing and manufacturing softgoods structures for aerostats, airships, blimps, and other lighter-than-air (LTA) structures. ILC is the world's largest producer of modern aerostat and airship envelopes. [6] [19]

Airships and blimps

Airships and blimps are used for a variety of applications including transport and tourism; advertising; and surveillance. ILC's airship products are used by the U.S. military, the American Blimp Corporation, and Zeppelin Luftschifftechnik GmbH (Germany). [19] [20]

High altitude airships

Since the early 1980s, ILC has been involved in the design and development of high altitude airships. The advent and growth of the cellular phone market renewed interest in the use of high altitude airships as an economical alternative to satellites. In the past decade, ILC has worked with Lockheed Martin to support several US government-funded high-altitude airship (HAA) programs to define the system for a mobile platform capable of carrying various payloads, including communications and Intelligence, Surveillance, and Reconnaissance (ISR) sensors. [19] [21]

Tethered Aerostat MarfaTX.jpg
Tethered Aerostat

Tethered aerostats

Aerostats are typically utilized as platforms to carry surveillance radars to altitudes reaching 15,000 feet (4,600 m) while tethered to the ground by a single tether. ILC has manufactured aerostats with volumes ranging from 56,000 to 595,000 cubic feet (1,600 to 16,800 m3). The length of these aerostats ranges from 109 to 240 feet (33 to 73 m). [6] [19] [21]

Heavy lift airships and balloons

The lift generated by a helium filled LTA vehicle can allow heavy loads to be transported in an economical manner. In the early 1990s, ILC was involved in the design and manufacture of logging balloons, devices used in the northwestern U.S. and western Canada for the purpose of retrieving logs from mountainous areas inaccessible by road. [4] [19]

Personal protective equipment

M40 gas mask US Navy 030428-M-1852W-037 Hospital Corpsman John Copeck assigned to 3D Medical Battalion, Training Company, takes a break to hydrate after connecting his canteen to his gas mask.jpg
M40 gas mask

Since the mid-1970s, ILC has designed and produced products for chemical and biological protection. Currently, ILC designs and produces respirators, masks, and suits used to protect against chemical, biological, radiological and nuclear (CBRN) threats. The products are used by U.S. military troops, federal employees, scientists and health care workers.

Masks and respirators

ILC produces powered air purifying respirators (PAPRs). These include the Sentinel XL CBRN PAPR, used to protect against CBRN threats; the Sentinel HP PAPR, used to protect against infectious disease; and the Sentinel XT PAPR, used to protect pharmaceutical workers from airborne active pharmaceutical ingredients (APIs). They also produce an air purifying escape respirator (APER), the SCape CBRN, and the M40/42 gas mask used by the U.S. military. [4] [22] [23]

Protective suits

In the late 1970s, ILC developed a special garment, the Demilitarization Protective Ensemble (DPE), to fulfill the U.S. Army's need for an off-the-shelf, positive pressure, totally encapsulating suit for use by maintenance personnel at a chemical weapons site. The DPE was delivered to the Army in 1979 and is still currently in daily use, with over 700 recorded entries into a "hot" environment and a perfect safety record.

From the technology used in production of the DPE, ILC developed a protective suit to be used for commercial applications. The Chemturion is a multi-use, totally encapsulating protective suit, currently used by Public Health Canada, Boston University, USAMRIID and AI Signal Research, the Center for Disease Control in Atlanta, and many industrial companies such as DuPont, Dow, and Georgia Pacific. [23] [24]

Flexible pharmaceutical containment systems

ILC designs and manufactures products that allow for flexible containment of potent pharmaceutical agents during the pharmaceutical drug manufacturing process. Such containment systems enable the safe and effective processing of active pharmaceutical ingredients. Flexible enclosure systems or specific products, such as the DoverPac, G2Pac and Continuous Liner, can be incorporated into various procedures in the manufacturing process to provide containment of potent pharmaceutical agents, protecting workers from harmful exposure and ensuring purity of the pharmaceutical agents by preventing contamination. [4] [25] [26]

Space inflatables

Pathfinder airbag on Mars Pan segment1.gif
Pathfinder airbag on Mars

ILC designs and manufactures inflatable structures for use in earth orbit, lunar, and planetary exploration. Inflatable structures have been used on a number of space missions for a variety of applications including specialized flexible containment covers (Hubble Space Telescope), impact attenuation airbag systems, and inflatable aerodynamic decelerators. [27] [28]

Habitats and shelters

ILC has developed and manufactured a variety of inflatable habitats, airlocks, and shelters for use in Earth orbit and lunar / planetary exploration. Lunar habitat projects include the X-Hab Lunar Habitat, the InFlex Lunar Habitat, the Toroidal Lunar Habitat, and the Expandable Lunar Habitat. ILC has also worked on the Antarctic Habitat Planetary Analog Study, the Lawrence Livermore Inflatable Space Station, and the Minimum Function Habitat. [29] [30]

Impact bags

The Pathfinder air bags are tested in June 1995 Pathfinder Air Bags - GPN-2000-000484.jpg
The Pathfinder air bags are tested in June 1995

For decades, ILC has worked on the design and manufacture of inflatable airbag systems. ILC's most notable accomplishments are the Mars Pathfinder and Mars Exploration Rover (MER) airbags which helped land the Sojourner , Spirit , and Opportunity rovers on the surface of Mars. In addition to planetary landing systems, ILC has designed and fabricated airbag landing systems to safely return crewed and uncrewed space systems to the surface of Earth. This includes airbags for the Orion spacecraft, and the Advanced Launch System. [4] [31] [32]

Other

Other inflatable products with space applications include ballutes and decelerators; inflatable and deployable antennas; sunshields, solar sails and solar arrays; radiation shields; decoys; and planetary balloons.

Engineered inflatables

ILC has produced numerous inflatable structures for military and aerospace applications. Inflatable structures are those made from high-performance flexible materials, often providing weight, size, and economic advantages over structures made from traditional metal or composite materials. Products include ballutes and decelerators; floats; munition dispensing systems; UAV wings; radomes; and shelters.

Related Research Articles

<span class="mw-page-title-main">Extravehicular activity</span> Activity done by an astronaut or cosmonaut outside a spacecraft

Extravehicular activity (EVA) is any activity done by an astronaut in outer space outside a spacecraft. In the absence of a breathable Earthlike atmosphere, the astronaut is completely reliant on a space suit for environmental support. EVA includes spacewalks and lunar or planetary surface exploration. In a stand-up EVA (SEVA), an astronaut stands through an open hatch but does not fully leave the spacecraft. EVAs have been conducted by the Soviet Union/Russia, the United States, Canada, the European Space Agency and China.

<span class="mw-page-title-main">Space suit</span> Garment worn to keep a human alive in the harsh environment of outer space

A space suit or spacesuit is a garment worn to keep a human alive in the harsh environment of outer space, vacuum and temperature extremes. Space suits are often worn inside spacecraft as a safety precaution in case of loss of cabin pressure, and are necessary for extravehicular activity (EVA), work done outside spacecraft. Space suits have been worn for such work in Earth orbit, on the surface of the Moon, and en route back to Earth from the Moon. Modern space suits augment the basic pressure garment with a complex system of equipment and environmental systems designed to keep the wearer comfortable, and to minimize the effort required to bend the limbs, resisting a soft pressure garment's natural tendency to stiffen against the vacuum. A self-contained oxygen supply and environmental control system is frequently employed to allow complete freedom of movement, independent of the spacecraft.

<span class="mw-page-title-main">MOOSE</span> Personal Space Ejection Mechanism

MOOSE, originally an acronym for Man Out Of Space Easiest but later changed to the more professional-sounding Manned Orbital Operations Safety Equipment, was a proposed emergency "bail-out" system capable of bringing a single astronaut safely down from Earth orbit to the planet's surface. The design was proposed by General Electric in the early 1960s. The system was quite compact, weighing 200 lb (91 kg) and fitting inside a suitcase-sized container. It consisted of a small twin-nozzle rocket motor sufficient to deorbit the astronaut, a PET film bag 6 ft (1.8 m) long with a flexible 0.25 in (6.4 mm) ablative heat shield on the back, two pressurized canisters to fill it with polyurethane foam, a parachute, radio equipment and a survival kit.

<span class="mw-page-title-main">Vectran</span> Aromatic polyester fiber

Vectran is a manufactured fiber, spun from a liquid-crystal polymer (LCP) created by Celanese Corporation and now manufactured by Kuraray. Chemically it is an aromatic polyester produced by the polycondensation of 4-hydroxybenzoic acid and 6-hydroxynaphthalene-2-carboxylic acid.

<span class="mw-page-title-main">Extravehicular Mobility Unit</span> Series of semi-rigid two-piece space suit models from the United States

The Extravehicular Mobility Unit (EMU) is an independent anthropomorphic spacesuit that provides environmental protection, mobility, life support, and communications for astronauts performing extravehicular activity (EVA) in Earth orbit. Introduced in 1981, it is a two-piece semi-rigid suit, and is currently one of two types of EVA spacesuits used by crew members on the International Space Station (ISS), the other being the Russian Orlan space suit. It was used by NASA's Space Shuttle astronauts prior to the end of the Shuttle program in 2011.

<span class="mw-page-title-main">Apollo/Skylab spacesuit</span> Space suit used in Apollo and Skylab missions

The Apollo/Skylab space suit is a class of space suits used in Apollo and Skylab missions. The names for both the Apollo and Skylab space suits were Extravehicular Mobility Unit (EMU). The Apollo EMUs consisted of a Pressure Suit Assembly (PSA) aka "suit" and a Portable Life Support System (PLSS) that was more commonly called the "backpack". The A7L was the PSA model used on the Apollo 7 through 14 missions.

<span class="mw-page-title-main">Advanced Crew Escape Suit</span> Full pressure suit

The Advanced Crew Escape Suit (ACES), or "pumpkin suit", is a full pressure suit that Space Shuttle crews began wearing after STS-65, for the ascent and entry portions of flight. The suit is a direct descendant of the U.S. Air Force high-altitude pressure suits worn by the two-man crews of the SR-71 Blackbird, pilots of the U-2 and X-15, and Gemini pilot-astronauts, and the Launch Entry Suits (LES) worn by NASA astronauts starting on the STS-26 flight, the first flight after the Challenger disaster. The suit is manufactured by the David Clark Company of Worcester, Massachusetts. Cosmetically the suit is very similar to the LES. ACES was first used in 1994.

<span class="mw-page-title-main">Mercury spacesuit</span>

The Mercury space suit was a full-body, high-altitude pressure suit originally developed by the B.F. Goodrich Company and the U.S. Navy for pilots of high-altitude fighter aircraft. It is best known for its role as the spacesuit worn by the astronauts of the Project Mercury spaceflights.

<span class="mw-page-title-main">Gemini spacesuit</span> Pressurized spacesuit used in the Gemini program

The Gemini spacesuit is a spacesuit worn by American astronauts for launch, in-flight activities and landing. It was designed by NASA based on the X-15 high-altitude pressure suit. All Gemini spacesuits were developed and manufactured by the David Clark Company in Worcester, Massachusetts.

<span class="mw-page-title-main">Inflatable space structures</span> Structures which use pressurized air

Inflatable space structures are structures which use pressurized air to maintain shape and rigidity. The technological approach has been employed from the early days of the space program with satellites such as Echo, to impact attenuation system that enabled the successful landing of the Pathfinder satellite and rover on Mars in 1997. Inflatable structures are also candidates for space structures, given their low weight, and hence easy transportability.

<span class="mw-page-title-main">Primary life support system</span> Life support device for a space suit

A primarylife support system (PLSS), is a device connected to an astronaut or cosmonaut's spacesuit, which allows extra-vehicular activity with maximum freedom, independent of a spacecraft's life support system. A PLSS is generally worn like a backpack. The functions performed by the PLSS include:

<span class="mw-page-title-main">Spacesuits in fiction</span> Spacesuits in Science-Fiction

Science fiction authors have designed imaginary spacesuits for their characters almost since the beginning of fiction set in space.

<span class="mw-page-title-main">Desert Research and Technology Studies</span> Field trials of technologies for manned planetary exploration

NASA's Desert Research and Technology Studies is a group of teams which perform an annual series of field trials seeking to demonstrate and test candidate technologies and systems for human exploration of the surface of the Moon, Mars, or other rocky bodies.

<span class="mw-page-title-main">Suitport</span> Alternative technology to enable extravehicular activity

A suitport or suitlock is an alternative technology to an airlock, designed for use in hazardous environments including in human spaceflight, especially planetary surface exploration. Suitports present advantages over traditional airlocks in terms of mass, volume, and ability to mitigate contamination by—and of—the local environment.

<span class="mw-page-title-main">Constellation Space Suit</span>

The Constellation Space Suit was a planned full pressure suit system that would have served as an intra-vehicular activity (IVA) and extra-vehicular activity (EVA) garment for the proposed Project Constellation flights. The design of the suit was announced by NASA on June 11, 2008, and it was to be manufactured by Houston, Texas-based Oceaneering International, the 4th company after the David Clark Company, Hamilton Sundstrand, and ILC Dover to produce life-support hardware, as a prime contractor, for in-flight space use.

<span class="mw-page-title-main">Space architecture</span> Architecture of off-planet habitable structures

Space architecture is the theory and practice of designing and building inhabited environments in outer space. This mission statement for space architecture was developed at the World Space Congress in Houston in 2002 by members of the Technical Aerospace Architecture Subcommittee of the American Institute of Aeronautics and Astronautics (AIAA). The architectural approach to spacecraft design addresses the total built environment. It is mainly based on the field of engineering, but also involves diverse disciplines such as physiology, psychology, and sociology.

Human analog missions are activities undertaken on Earth in various environments to simulate aspects of human missions to other worlds, including the Moon, asteroids, and Mars. These remote field tests are performed in locations that are identified based on their physical similarities to the extreme space environments of a target mission. Such activities are undertaken to test hardware and operational concepts in relevant environments.

<span class="mw-page-title-main">Z series space suits</span>

The Z series is a series of prototype extra-vehicular activity (EVA) space suits being developed in the Advanced Extravehicular Mobility Unit (AEMU) project under NASA's Advanced Exploration Systems (AES) program. The suits are being designed to be used for both micro-gravity and planetary EVAs.

<span class="mw-page-title-main">Mars suit</span>

A Mars suit or Mars space suit is a space suit for EVAs on the planet Mars. Compared to a suit designed for space-walking in the near vacuum of low Earth orbit, Mars suits have a greater focus on actual walking and a need for abrasion resistance. Mars' surface gravity is 37.8% of Earth's, approximately 2.3 times that of the Moon, so weight is a significant concern, but there are fewer thermal demands compared to open space. At the surface the suits would contend with the atmosphere of Mars, which has a pressure of about 0.6 to 1 kilopascal. On the surface, radiation exposure is a concern, especially solar flare events, which can dramatically increase the amount of radiation over a short time.

Eleanor ("Ellie") Foraker was an American seamstress who worked at the International Latex Corporation (ILC) and was involved in NASA's space program. She left the Playtex division of ILC Dover in 1964 and worked on underground inflatable oil tanks and gas masks to aid the development of the A7L spacesuit for the Apollo 11 mission. Her last contribution at NASA before retirement was with the Pathfinder Mission, where she worked on stitching together the airbag system that was used to land the Sojourner rover on Mars.

References

  1. "Contact".
  2. 1 2 3 4 ILC Dover, "ILC Milestones". Retrieved on 2011-02-01
  3. Jewish Virtual Library, "Obituary, Abram Nathaniel Spanel, Encyclopedia Judaica". Retrieved on 2011-02-01.
  4. 1 2 3 4 5 6 7 8 NASA Tech Briefs, "Space Suit Spins". Retrieved on 2011-02-01.
  5. 1 2 3 Bivens, Terry, "ICL (sic) Dover known for Spacesuit Design, Houston Chronicle, 12/6/87", Houston Chronicle Archives. Retrieved on 2011-02-01.
  6. 1 2 3 4 Durantine, Peter, "This Suit Was Made for Walkin', The News Journal, 5/5/06", Delaware Online. Retrieved on 2011-02-10.
  7. U.S. Army Fact Files, "Weapons Systems, Field Protection Mask, M40/42 Series". Retrieved on 2011-02-01.
  8. 1 2 3 "Moon Machines - Space Suit Factory". Discovery Science. May 4, 2009. Archived from the original on December 29, 2010.
  9. Airship Blimp Resources, "ILC Dover". Retrieved on 2011-02-01.
  10. Frembes, Linda Seid, "ILC Dover, Weaving through Space, The Manufacturer" Archived 2011-09-27 at the Wayback Machine . Retrieved on 2011-02-01.
  11. Space Daily, "ILC Dover Airbags Cushion MER Spirit Landing on Mars, Mars Daily". Retrieved on 2011-02-01.
  12. O'Hanlon, John, "ILC Dover, Giant Strides, The Manufacturer" Archived 2011-09-18 at the Wayback Machine . Retrieved on 2011-02-01.
  13. 1 2 3 4 NASA History Program Office, Human Space Flight, Spacesuits. Retrieved on 2011-02-10.
  14. Apollo Operations Handbook Extra Vehicular Mobility Unit, CSD-A-789-(1). NASA. 1971.
  15. 1 2 3 4 5 6 ILC Dover, Spacesuits. Retrieved on 2011-02-10.
  16. 1 2 3 NASA, Directorates, Space Operations. Retrieved on 2011-02-10.
  17. ILC Dover, ILC Awards Archived 2012-07-04 at the Wayback Machine . Retrieved on 2012-12-21.
  18. ILC Dover, ILC Houston. Retrieved on 2012-12-21.
  19. 1 2 3 4 5 ILC Dover, Lighter-Than-Air-Structures Archived 2011-01-14 at the Wayback Machine . Retrieved 2011-02-01.
  20. Bolkcom, Christopher, "Potential Military Use of Airships and Aerostats," CRS Report for Congress. Retrieved on 2011-02-10.
  21. 1 2 Brown, Jeff, "ILC Dover Expands Work on Terrorist-Detecting Airships" Archived 2011-07-18 at the Wayback Machine Dover Post, Apr 20, 2010. Retrieved 2011-02-10.
  22. FEMA, Sentinel XL CBRN, Product Details Archived 2011-10-06 at the Wayback Machine . Retrieved on 2011-02-11.
  23. 1 2 ILC Dover, PPE -Personal-Protection-Equipment. Retrieved on 2011-02-11.
  24. U.S. Army Chemical Materials Agency, Suiting up for Safety, Fact Sheet Archived 2015-09-23 at the Wayback Machine . Retrieved on 2011-02-11.
  25. George, Alan, "Key Regulatory Considerations for Flexible Containment Systems" Archived 2011-07-13 at the Wayback Machine , Life Science Leader, Dec 2009. Retrieved on 2011-02-11.
  26. Wood, James P., ed. Containment in the Pharmaceutical Industry, Marcel Dekker, Inc., 2001.
  27. NASA, Atmospheric Entry Decelerator Technologies Archived 2011-07-21 at the Wayback Machine . Retrieved on 2011-02-11.
  28. ILC Dover, Space Inflatables. Retrieved on 2011-02-11.
  29. Spaminato, Phil, "Overview of ILC Dover Habitat Programs and Technology" Archived 2012-03-17 at the Wayback Machine , Future in Space (FISO) Colloquium, Jul 2010. Retrieved on 2011-02-11.
  30. SpaceRef, NASA, NSF, ILC Dover Inflatable Habitat Blog, Jan 2008. Retrieved on 2011-02-11.
  31. NASA, Mars Pathfinder Air Bag Landing Test. Retrieved on 2011-02-11.
  32. NASA Jet Propulsion Laboratory, How to Land Softly on a Hard Planet. Retrieved on 2011-02-01.

Further reading