Inconel 625

Last updated

Inconel 625
Cladding-Auftragschweissung in einem Rohr mit Inconel 625.jpg
Cladding overlay in a tube with Inconel 625
SynonymWerkstoff 2.4856
Material type Alloy
Alloy properties
UNS identifier N06625
Alloy typeNickel-based superalloy
Composition
  • Ni 58%
  • Cr 20-23%
  • Mo 8-10%
  • Fe 5%
  • Nb + Ta 3.15-4.15%
  • Co 1%
  • Mn 0.5%
  • Si 0.5%
  • Al 0.4%
  • Ti 0.4%
  • C 0.1%
  • P 0.015%
  • S 0.015%
Physical properties
Density (ρ)0.305 lb/cu in (8,442.4 kg/m3)
Mechanical properties
Young's modulus (E)207.5-147.5 @ 70–1,600 °F (21–871 °C) (annealed)
204.8-148.2 @ 70–1,600 °F (21–871 °C) (solution treated)
Tensile strength (σt)Rod, bar, plate: 120–160 ksi (827–1,103 MPa) (as rolled), 120–150 ksi (827–1,034 MPa) (annealed)
Elongation (ε)at break Rod, bar, plate: 60-30% (as rolled and annealed)
Poisson's ratio (ν)0.278-0.336 @ 70–1,600 °F (21–871 °C) (annealed)
0.312-0.289 @ 70–1,600 °F (21–871 °C) (solution treated)
HardnessBrinell Rod, bar, plate: 175-240 (as rolled)
Thermal properties
Melting temperature (Tm)2,350–2,460 °F (1,288–1,349 °C)
Thermal conductivity (k)50 BTU/(hr·ft⋅°F) @ −250 °F (−157 °C) – 175 BTU/(hr·ft⋅°F) @ 1,800 °F (982 °C)
Specific heat capacity (c)0.096-0.160 BTU/(lb⋅°F)
(0.402-0.669 J/g⋅°C)
@ 0–2,000 °F (−18–1,093 °C)
Electrical properties
Permeability (μ)1.006 @ 200 Oe (15.92 kA/m)
Values displayed for tensile strength, elongation, and hardness are shown for various products under 4 in (10.2 cm) in size, and are measured at room temperature.

Inconel Alloy 625 (UNS designation N06625) is a nickel-based superalloy that possesses high strength properties and resistance to elevated temperatures. It also demonstrates remarkable protection against corrosion and oxidation. Its ability to withstand high stress and a wide range of temperatures, both in and out of water, as well as being able to resist corrosion while being exposed to highly acidic environments makes it a fitting choice for nuclear and marine applications. [1] [2] [3]

Contents

Inconel 625 was developed in the 1960s with the purpose of creating a material that could be used for steam-line piping. Some modifications were made to its original composition that have enabled it to be even more creep-resistant and weldable. Because of this, the uses of Inconel 625 have expanded into a wide range of industries such as the chemical processing industry, and for marine and nuclear applications to make pumps and valves and other high pressure equipment. [4] [1]

Because of the metal's high Niobium (Nb) levels as well as its exposure to harsh environments and high temperatures, there was concern about the weldability of Inconel 625. Studies were therefore conducted to test the metal's weldability, tensile strength and creep resistance, and Inconel 625 was found to be an ideal choice for welding. [3] Other well known names for Inconel 625 are Haynes 625, Nickelvac 625, Nicrofer 6020, Altemp 625 and Chronic 625

Chemistry

Inconel 625 was designed as a solid solution strengthened material with no significant microstructure. This holds true at low and high temperatures, but there is a region (923 to 1148 K) where precipitates form that are detrimental to the creep properties, and thus the strength, of the alloy. Under any creep conditions (high temperature with an applied stress), M23C6-type carbides form at the grain boundaries. When tested at 973 K, γ” precipitates begin forming. These γ” phase precipitates are ordered A3 B type with a composition of Ni3(Nb, Al, Ti) and a tetragonal crystal structure. They form a disk-shaped morphology and are coherent with respect to the matrix. When tested at 998 K, a δ-phase precipitate begins forming which consist of Ni3(Nb, Mo) in an orthorhombic crystal structure. They form in a needle-like morphology and are incoherent with the matrix. Both of these precipitates can be completely dissolved back into the matrix when the sample is heated to 1148 K for 5 hours. This leads to the ability to recover creep properties of the alloy to prolong the materials lifetime. [5]

ASTM Specifications

ASTM (American Society for Testing and Materials) for various products made out of Inconel 625 are as follow: [6]

Pipe SeamlessPipe WeldedTube SeamlessTube WeldedSheet/PlateBarForgingFittingWire
B444B705B444B704B443B446

Markets

Markets for Inconel 625 include:

Applications

Product and technology applications of Inconel 625 include: [7]

Specifications

Specifications and certifications include: [8] [9] [ clarification needed ]


See also

Related Research Articles

<span class="mw-page-title-main">Stainless steel</span> Steel alloy resistant to corrosion

Stainless steel, also known as inox, corrosion-resistant steel (CRES) and rustless steel, is an alloy of iron that is resistant to rusting and corrosion. It contains iron with chromium and other elements such as molybdenum, carbon, nickel and nitrogen depending on its specific use and cost. Stainless steel's resistance to corrosion results from the 10.5%, or more, chromium content which forms a passive film that can protect the material and self-heal in the presence of oxygen.

<span class="mw-page-title-main">High-strength low-alloy steel</span> Type of alloy steel

High-strength low-alloy steel (HSLA) is a type of alloy steel that provides better mechanical properties or greater resistance to corrosion than carbon steel. HSLA steels vary from other steels in that they are not made to meet a specific chemical composition but rather specific mechanical properties. They have a carbon content between 0.05 and 0.25% to retain formability and weldability. Other alloying elements include up to 2.0% manganese and small quantities of copper, nickel, niobium, nitrogen, vanadium, chromium, molybdenum, titanium, calcium, rare-earth elements, or zirconium. Copper, titanium, vanadium, and niobium are added for strengthening purposes. These elements are intended to alter the microstructure of carbon steels, which is usually a ferrite-pearlite aggregate, to produce a very fine dispersion of alloy carbides in an almost pure ferrite matrix. This eliminates the toughness-reducing effect of a pearlitic volume fraction yet maintains and increases the material's strength by refining the grain size, which in the case of ferrite increases yield strength by 50% for every halving of the mean grain diameter. Precipitation strengthening plays a minor role, too. Their yield strengths can be anywhere between 250–590 megapascals (36,000–86,000 psi). Because of their higher strength and toughness HSLA steels usually require 25 to 30% more power to form, as compared to carbon steels.

Nichrome is a family of alloys of nickel and chromium commonly used as resistance wire, heating elements in devices like toasters, electrical kettles and space heaters, in some dental restorations (fillings) and in a few other applications.

Refractory metals are a class of metals that are extraordinarily resistant to heat and wear. The expression is mostly used in the context of materials science, metallurgy and engineering. The definition of which elements belong to this group differs. The most common definition includes five elements: two of the fifth period and three of the sixth period. They all share some properties, including a melting point above 2000 °C and high hardness at room temperature. They are chemically inert and have a relatively high density. Their high melting points make powder metallurgy the method of choice for fabricating components from these metals. Some of their applications include tools to work metals at high temperatures, wire filaments, casting molds, and chemical reaction vessels in corrosive environments. Partly due to the high melting point, refractory metals are stable against creep deformation to very high temperatures.

<span class="mw-page-title-main">Creep (deformation)</span> Tendency of a solid material to move slowly or deform permanently under mechanical stress

In materials science, creep is the tendency of a solid material to undergo slow deformation while subject to persistent mechanical stresses. It can occur as a result of long-term exposure to high levels of stress that are still below the yield strength of the material. Creep is more severe in materials that are subjected to heat for long periods and generally increase as they near their melting point.

<span class="mw-page-title-main">Monel</span> Solid-solution binary alloy of nickel and copper

Monel is a group of alloys of nickel and copper, with small amounts of iron, manganese, carbon, and silicon. Monel is not a cupronickel alloy because it has less than 60% copper.

<span class="mw-page-title-main">Inconel</span> Austenitic nickel-chromium superalloys

Inconel is a nickel-chromium-based superalloy often utilized in extreme environments where components are subjected to high temperature, pressure or mechanical loads. Inconel alloys are oxidation- and corrosion-resistant. When heated, Inconel forms a thick, stable, passivating oxide layer protecting the surface from further attack. Inconel retains strength over a wide temperature range, attractive for high-temperature applications where aluminium and steel would succumb to creep as a result of thermally-induced crystal vacancies. Inconel's high-temperature strength is developed by solid solution strengthening or precipitation hardening, depending on the alloy.

<span class="mw-page-title-main">Superalloy</span> Alloy with higher durability than normal metals

A superalloy, or high-performance alloy, is an alloy with the ability to operate at a high fraction of its melting point. Key characteristics of a superalloy include mechanical strength, thermal creep deformation resistance, surface stability, and corrosion and oxidation resistance.

<span class="mw-page-title-main">Intergranular corrosion</span> When crystallite boundaries are more corrosive than their interiors

In materials science, intergranular corrosion (IGC), also known as intergranular attack (IGA), is a form of corrosion where the boundaries of crystallites of the material are more susceptible to corrosion than their insides.

<span class="mw-page-title-main">Magnesium alloy</span> Mixture of magnesium with other metals

Magnesium alloys are mixtures of magnesium with other metals, often aluminium, zinc, manganese, silicon, copper, rare earths and zirconium. Magnesium alloys have a hexagonal lattice structure, which affects the fundamental properties of these alloys. Plastic deformation of the hexagonal lattice is more complicated than in cubic latticed metals like aluminium, copper and steel; therefore, magnesium alloys are typically used as cast alloys, but research of wrought alloys has been more extensive since 2003. Cast magnesium alloys are used for many components of modern automobiles and have been used in some high-performance vehicles; die-cast magnesium is also used for camera bodies and components in lenses.

<span class="mw-page-title-main">SAE steel grades</span> Standard alloy numbering system for steel grades

The SAE steel grades system is a standard alloy numbering system for steel grades maintained by SAE International.

Exotic Materials can include plastics, superalloys, semiconductors, superconductors, and ceramics.

6061 aluminium alloy is a precipitation-hardened aluminium alloy, containing magnesium and silicon as its major alloying elements. Originally called "Alloy 61S", it was developed in 1935. It has good mechanical properties, exhibits good weldability, and is very commonly extruded. It is one of the most common alloys of aluminium for general-purpose use.

Nickel aluminide refers to either of two widely used intermetallic compounds, Ni3Al or NiAl, but the term is sometimes used to refer to any nickel–aluminium alloy. These alloys are widely used because of their high strength even at high temperature, low density, corrosion resistance, and ease of production. Ni3Al is of specific interest as a precipitate in nickel-based superalloys, where it is called the γ' (gamma prime) phase. It gives these alloys high strength and creep resistance up to 0.7–0.8 of its melting temperature. Meanwhile, NiAl displays excellent properties such as lower density and higher melting temperature than those of Ni3Al, and good thermal conductivity and oxidation resistance. These properties make it attractive for special high-temperature applications like coatings on blades in gas turbines and jet engines. However, both these alloys have the disadvantage of being quite brittle at room temperature, with Ni3Al remaining brittle at high temperatures as well. To address this problem, has been shown that Ni3Al can be made ductile when manufactured in single-crystal form rather than in polycrystalline form.

Electron-beam additive manufacturing, or electron-beam melting (EBM) is a type of additive manufacturing, or 3D printing, for metal parts. The raw material is placed under a vacuum and fused together from heating by an electron beam. This technique is distinct from selective laser sintering as the raw material fuses have completely melted. Selective Electron Beam Melting (SEBM) emerged as a powder bed-based additive manufacturing (AM) technology and was brought to market in 1997 by Arcam AB Corporation headquartered in Sweden.

Oxide dispersion strengthened alloys (ODS) are alloys that consist of a metal matrix with small oxide particles dispersed within it. They have high heat resistance, strength, and ductility. Alloys of nickel are the most common but includes iron aluminum alloys.

A niobium alloy is one in which the most common element is niobium.

Incoloy refers to a range of superalloys now produced by the Special Metals Corporation (SMC) group of companies and created with a trademark by the Inco company in 1952. Originally Inco protected these alloys by patent. In 2000, the SMC published a 61-page document entitled "High-Performance Alloys for Resistance to Aqueous Corrosion" highlighting Incoloy, as well as Monel and Inconel products, and their use in fluid environments such as sulfuric acid, hydrochloric acid, hydrofluoric acid, phosphoric acid, nitric acid, other acids as well as freshwater environments.

<span class="mw-page-title-main">Selective laser melting</span> 3D printing technique

Selective laser melting (SLM) is one of many proprietary names for a metal additive manufacturing (AM) technology that uses a bed of powder with a source of heat to create metal parts. Also known as direct metal laser sintering (DMLS), the ASTM standard term is powder bed fusion (PBF). PBF is a rapid prototyping, 3D printing, or additive manufacturing technique designed to use a high power-density laser to melt and fuse metallic powders together.

Aluminium–scandium alloys (AlSc) are aluminum alloys that consist largely of aluminium (Al) and traces of scandium (Sc) as the main alloying elements. In principle, aluminium alloys strengthened with additions of scandium are very similar to traditional nickel-base superalloys in that both are strengthened by coherent, coarsening resistant precipitates with an ordered L12 structure. But Al–Sc alloys contain a much lower volume fraction of precipitates, and the inter-precipitate distance is much smaller than in their nickel-base counterparts. In both cases however, the coarsening resistant precipitates allow the alloys to retain their strength at high temperatures.

References

  1. 1 2 "Special Metals INCONEL® Alloy 625". ASM Aerospace Specification Metals Inc.
  2. "High Temp Super Alloys". ASM Aerospace Specification Metals Inc.
  3. 1 2 Eiselstein, H.L.; Tillack, D.J. (1991). "The Invention and Definition of Alloy 625". Superalloys 718, 625 and Various Derivatives (1991). TMS The Minerals, Metals and Materials Society. pp. 1–14. doi:10.7449/1991/Superalloys_1991_1_14. ISBN   0-87339-173-X.
  4. Smith, G.D.; Tillack, D.J.; Patel, S.J. (2001). "Alloy 625 – Impressive Past/Significant Presence/Awesome Future". Superalloys 718, 625, 706 and Various Derivatives. TMS The Minerals, Metals and Materials Society. pp. 35–46. doi:10.7449/2001/Superalloys_2001_35_46. ISBN   0-87339-510-7.
  5. Mathew, M. D. (2008). "Microstructural changes in alloy 625 during high temperature creep". Materials Characterization. 59 (5): 508–513. doi:10.1016/j.matchar.2007.03.007.
  6. "ASTM Specifications".
  7. "Applications of Inconel 625".
  8. "Alloy 625". Rickard.
  9. "Inconel 625 Nickel Alloy". Service Steel Aerospace. 20 November 2020.