International Fixed Calendar

Last updated

The International Fixed Calendar (also known as the IFC, Cotsworth plan, the Cotsworth calendar and the Eastman plan) is a proposed calendar reform designed by Moses B. Cotsworth, first presented in 1902. [1] The International Fixed Calendar divides the year into 13 months of 28 days each. A type of perennial calendar, every date is fixed to the same weekday every year. Though it was never officially adopted at the country level, the entrepreneur George Eastman instituted its use at the Eastman Kodak Company in 1928, where it was used until 1989. [2] While it is sometimes described as the 13-month calendar or the equal-month calendar, various alternative calendar designs share these features.

Contents

Rules

The calendar year has 13 months with 28 days each, divided into exactly 4 weeks (13 × 28 = 364). An extra day added as a holiday at the end of the year (after December 28, i.e. equal to December 31 Gregorian), sometimes called "Year Day", does not belong to any week and brings the total to 365 days. Each year coincides with the corresponding Gregorian year, so January 1 in the Cotsworth calendar always falls on Gregorian January 1. [lower-alpha 1] Twelve months are named and ordered the same as those of the Gregorian calendar, except that the extra month is inserted between June and July, and called Sol. Situated in mid-summer (from the point of view of its Northern Hemisphere authors) and including the mid-year solstice , the name of the new month was chosen in homage to the sun. [3]

Leap years in the International Fixed Calendar contain 366 days, and its occurrence follows the Gregorian rule. There is a leap year in every year whose number is divisible by 4, but not if the year number is divisible by 100, unless it is also divisible by 400. So although the year 2000 was a leap year, the years 1700, 1800, and 1900 were common years. The International Fixed Calendar inserts the extra day in leap years as June 29 - between Saturday June 28 and Sunday Sol 1.

Each month begins on a Sunday, and ends on a Saturday; consequently, every year begins on Sunday. Neither Year Day nor Leap Day are considered to be part of any week; they are preceded by a Saturday and are followed by a Sunday, making a long weekend. As a result, a particular day usually has a different day of the week in the IFC than in all traditional calendars that contain a seven-day week. The IFC is, however, almost compatible with the World Calendar in this regard, because it also starts Sunday and has the extra day at the end of the year and the leap day in the middle, except IFC leaps on Gregorian June 17 and TWC leaps two weeks later on July 1. Since this break of the ancient week cycle has been a major concern raised against its adoption, various leap week calendars have been proposed as a solution.

Common layout of all months
Days of the week
SunMonTueWedThuFriSatHol
01020304050607Leap Day,
Year Day
08091011121314
15161718192021
22232425262728X*

* The two special dates have been recorded as either the 29th day of the month ending or the 0th day of the month beginning, or, more correctly, as outside any month and week with no ordinal number.

The date for today, 5 May 2024, using this calendar is Saturday, 14 May 2024.

The following table shows how the 13 months and extra days of the International Fixed Calendar occur in relation to the dates of the Gregorian calendar:

IFCMatching dates on the Gregorian calendar
Starts on fixed day 1Ends on fixed day 28
JanuaryJanuary 1January 28
FebruaryJanuary 29February 25
MarchFebruary 26March 25*
AprilMarch 26*April 22*
MayApril 23*May 20*
JuneMay 21*June 17*
Leap Day*June 17
SolJune 18July 15
JulyJuly 16August 12
AugustAugust 13September 9
SeptemberSeptember 10October 7
OctoberOctober 8November 4
NovemberNovember 5December 2
DecemberDecember 3December 30
Year DayDecember 31

* In a leap year, these Gregorian dates between March and June are a day earlier. March in the Fixed Calendar always has a fixed number of days (28), and includes an eventual Gregorian February 29. The rule for finding leap years is the same in both calendars.

History

Lunisolar calendars, with fixed weekdays, existed in many ancient cultures, with certain holidays always falling on the same dates of the month and days of the week. That's the same thing

The simple idea of a 13-month perennial calendar has been around since at least the middle of the 18th century. Versions of the idea differ mainly on how the months are named, and the treatment of the extra day in leap year.

The "Georgian calendar" was proposed in 1745 by Reverend Hugh Jones, an American colonist from Maryland writing under the pen name Hirossa Ap-Iccim. [4] The author named the plan, and the thirteenth month, after King George II of Great Britain. The 365th day each year was to be set aside as Christmas. The treatment of leap year varied from the Gregorian rule, however, and the year would begin closer to the winter solstice. In a later version of the plan, published in 1753, the 13 months were all renamed for Christian saints.

In 1849 the French philosopher Auguste Comte (1798–1857) proposed the 13-month Positivist Calendar , naming the months: Moses, Homer, Aristotle, Archimedes, Caesar, St Paul, Charlemagne, Dante, Gutenberg, Shakespeare, Descartes, Frederic and Bichat. The days of the year were likewise dedicated to "saints" in the Positivist Religion of Humanity. Positivist weeks, months, and years begin with Monday instead of Sunday. Comte also reset the year number, beginning the era of his calendar (year 1) with the Gregorian year 1789. For the extra days of the year not belonging to any week or month, Comte followed the pattern of Ap-Iccim (Jones), ending each year with a festival on the 365th day, followed by a subsequent feast day occurring only in leap years.

Whether Moses Cotsworth was familiar with the 13-month plans that preceded his International Fixed Calendar is not known. He did follow Ap-Iccim (Jones) in designating the 365th day of the year as Christmas. His suggestion was that this last day of the year should be designated a Sunday, and hence, because the following day would be New Year's Day and a Sunday also, he called it a Double Sunday. [5] Since Cotsworth's goal was a simplified, more "rational" calendar for business and industry, he would carry over all the features of the Gregorian calendar consistent with this goal, including the traditional month names, the week beginning on Sunday (still traditionally used in US, but uncommon in Europe and in the ISO week standard, starting their weeks on Monday), and the Gregorian leap-year rule.

To promote Cotsworth's calendar reform the International Fixed Calendar League was founded in 1923, just after the plan was selected by the League of Nations as the best of 130 calendar proposals put forward. [6] Sir Sandford Fleming, the inventor and driving force behind worldwide adoption of standard time, became the first president of the IFCL. [7] The League opened offices in London and later in Rochester, New York. George Eastman, of the Eastman Kodak Company, became a fervent supporter of the IFC, and instituted its use at Kodak. The International Fixed Calendar League ceased operations shortly after the calendar plan failed to win final approval of the League of Nations in 1937. [8]

Advantages

The several advantages of the International Fixed Calendar are mainly related to its organization.

Disadvantages

See also

Related Research Articles

<span class="mw-page-title-main">Calendar</span> System for organizing the days of year

A calendar is a system of organizing days. This is done by giving names to periods of time, typically days, weeks, months and years. A date is the designation of a single and specific day within such a system. A calendar is also a physical record of such a system. A calendar can also mean a list of planned events, such as a court calendar, or a partly or fully chronological list of documents, such as a calendar of wills.

<span class="mw-page-title-main">Hebrew calendar</span> Lunisolar calendar used for Jewish religious observances

The Hebrew calendar, also called the Jewish calendar, is a lunisolar calendar used today for Jewish religious observance and as an official calendar of Israel. It determines the dates of Jewish holidays and other rituals, such as yahrzeits and the schedule of public Torah readings. In Israel, it is used for religious purposes, provides a time frame for agriculture, and is an official calendar for civil holidays alongside the Gregorian calendar.

The Julian calendar is a solar calendar of 365 days in every year with an additional leap day every fourth year. The Julian calendar is still used as a religious calendar in parts of the Eastern Orthodox Church and in parts of Oriental Orthodoxy as well as by the Amazigh people.

A leap year is a calendar year that contains an additional day compared to a common year. The 366th day is added to keep the calendar year synchronised with the astronomical year or seasonal year. Since astronomical events and seasons do not repeat in a whole number of days, calendars having a constant number of days each year will unavoidably drift over time with respect to the event that the year is supposed to track, such as seasons. By inserting ("intercalating") an additional day—a leap day—or month—a leap month—into some years, the drift between a civilization's dating system and the physical properties of the Solar System can be corrected.

Reform of the date of Easter refers to proposals to change the date for the annual celebration of Easter. These proposals include setting a fixed date or agreeing between Eastern and Western Christendom a common basis for calculating the date of Easter so that all Christians celebrate the Festival on the same day. As of 2023, no such agreement has been reached.

The World Calendar is a proposed reform of the Gregorian calendar created by Elisabeth Achelis of Brooklyn, New York in 1930.

A solar calendar is a calendar whose dates indicate the season or almost equivalently the apparent position of the Sun relative to the stars. The Gregorian calendar, widely accepted as a standard in the world, is an example of a solar calendar. The main other types of calendar are lunar calendar and lunisolar calendar, whose months correspond to cycles of Moon phases. The months of the Gregorian calendar do not correspond to cycles of the Moon phase.

The Soviet calendar was a modified Gregorian calendar that was used in Soviet Russia between 1918 and 1940. Several variations were used during that time.

<span class="mw-page-title-main">Date of Easter</span>

As a moveable feast, the date of Easter is determined in each year through a calculation known as computus. Easter is celebrated on the first Sunday after the Paschal full moon. Determining this date in advance requires a correlation between the lunar months and the solar year, while also accounting for the month, date, and weekday of the Julian or Gregorian calendar. The complexity of the algorithm arises because of the desire to associate the date of Easter with the date of the Jewish feast of Passover which, Christians believe, is when Jesus was crucified.

Dominical letters or Sunday letters are a method used to determine the day of the week for particular dates. When using this method, each year is assigned a letter depending on which day of the week the year starts. The Dominical letter for the current year 2024 is GF.

Calendar reform or calendrical reform is any significant revision of a calendar system. The term sometimes is used instead for a proposal to switch to a different calendar design.

The positivist calendar was a calendar reform proposal by Auguste Comte (1798–1857) in 1849. Revising the earlier work of Marco Mastrofini, or an even earlier proposal by "Hirossa Ap-Iccim", Comte developed a solar calendar with 13 months of 28 days, and an additional festival day commemorating the dead, totalling 365 days.

A leap week calendar is a calendar system with a whole number of weeks in a year, and with every year starting on the same weekday. Most leap week calendars are proposed reforms to the civil calendar, in order to achieve a perennial calendar. Some, however, such as the ISO week date calendar, are simply conveniences for specific purposes.

<span class="mw-page-title-main">Perpetual calendar</span> Calendar designed to look up the day of the week for a given date

A perpetual calendar is a calendar valid for many years, usually designed to look up the day of the week for a given date in the past or future.

The Symmetry454 calendar (Sym454) is a proposal for calendar reform created by Irv Bromberg of the University of Toronto, Canada. It is a perennial solar calendar that conserves the traditional month pattern and 7-day week, has symmetrical equal quarters in 82% of the years in its 293-year cycle, and starts every month on Monday.

The Pax calendar was invented by James A. Colligan, SJ in 1930, as a perennializing reform of the annualized Gregorian calendar.

The ISO week date system is effectively a leap week calendar system that is part of the ISO 8601 date and time standard issued by the International Organization for Standardization (ISO) since 1988 and, before that, it was defined in ISO (R) 2015 since 1971. It is used (mainly) in government and business for fiscal years, as well as in timekeeping. This was previously known as "Industrial date coding". The system specifies a week year atop the Gregorian calendar by defining a notation for ordinal weeks of the year.

The Hanke–Henry Permanent Calendar (HHPC) is a proposal for calendar reform. It is one of many examples of leap week calendars, calendars that maintain synchronization with the solar year by intercalating entire weeks rather than single days. It is a modification of a previous proposal, Common-Civil-Calendar-and-Time (CCC&T). With the Hanke–Henry Permanent Calendar, every calendar date always falls on the same day of the week. A major feature of the calendar system is the abolition of time zones.

A perennial calendar is a calendar that applies to any year, keeping the same dates, weekdays and other features.

<span class="mw-page-title-main">Solar Hijri calendar</span> Official calendar of Iran

The Solar Hijri calendar is a solar calendar and one of the various Iranian calendars. It begins on the March equinox as determined by the astronomical calculation for the Iran Standard Time meridian and has years of 365 or 366 days. It is the modern principal calendar in Iran and Afghanistan and is sometimes also called the Shamsi calendar and Khorshidi calendar. It is abbreviated as SH, HS or, by analogy with AH, AHSh.

References

Notes

  1. See the table in Cotsworth 1904, p. i

Citations

  1. Cotsworth 1904.
  2. Exhibit at George Eastman House, viewed June 2008
  3. Cotsworth suggested "Mid" as an alternative name. See his address in Royal Society of Canada, Proceedings and Transactions of the Royal Society of Canada, 3d series, vol. II (Ottawa: James Hope & Son, 1908), pp. 211-41 at 231.
  4. Hirossa Ap-Iccim, "An Essay on the British Computation of Time, Coins, Weights, and Measures" The Gentleman's Magazine, 15 (1745): 377-379
  5. Cotsworth 1904, p. i.
  6. Duncan Steel, Marking Time: The Epic Quest to Invent the Perfect Calendar (New York: John Wiley & Sons, 2000), page 309
  7. Moses Bruine Cotsworth, Calendar Reform (London: The International Fixed Calendar League, 1927), Preface.
  8. Journal of Calendar Reform volume 16, number 4 (1944): 165-66
  9. Bull, Jonathan R.; Rowland, Simon P.; Scherwitzl, Elina Berglund; Scherwitzl, Raoul; Danielsson, Kristina Gemzell; Harper, Joyce (August 27, 2019). "Real-world menstrual cycle characteristics of more than 600,000 menstrual cycles". npj Digital Medicine. 2 (1): 83. doi: 10.1038/s41746-019-0152-7 . ISSN   2398-6352. PMC   6710244 . PMID   31482137.
  10. "The Death and Life of the 13-Month Calendar". Bloomberg.com. December 11, 2014. Retrieved June 2, 2022.
  11. Stockbridge, Frank Parker (June 1929). "New calendar by 1933 - Eastman". Popular Science Monthly . No. 32. pp. 131–133.
  12. Eastman, George (May 1926). "The importance of calendar reform to the world of business". The Nation's Business. pp. 42, 46.
  13. Benjamin J. Elton (February 24, 2012). "Calendar Reform and Joseph Herman Hertz". Jewish Telegraphic Agency . Retrieved October 4, 2019.

Sources