Inverse Galois problem

Last updated
Unsolved problem in mathematics:

Is every finite group the Galois group of a Galois extension of the rational numbers?

Contents

In Galois theory, the inverse Galois problem concerns whether or not every finite group appears as the Galois group of some Galois extension of the rational numbers . This problem, first posed in the early 19th century, [1] is unsolved.

There are some permutation groups for which generic polynomials are known, which define all algebraic extensions of having a particular group as Galois group. These groups include all of degree no greater than 5. There also are groups known not to have generic polynomials, such as the cyclic group of order 8.

More generally, let G be a given finite group, and K a field. If there is a Galois extension field L/K whose Galois group is isomorphic to G, one says that G is realizable over K.

Partial results

Many cases are known. It is known that every finite group is realizable over any function field in one variable over the complex numbers , and more generally over function fields in one variable over any algebraically closed field of characteristic zero. Igor Shafarevich showed that every finite solvable group is realizable over . [2] It is also known that every simple sporadic group, except possibly the Mathieu group M23, is realizable over . [3]

David Hilbert showed that this question is related to a rationality question for G:

If K is any extension of on which G acts as an automorphism group, and the invariant field KG is rational over , then G is realizable over .

Here rational means that it is a purely transcendental extension of , generated by an algebraically independent set. This criterion can for example be used to show that all the symmetric groups are realizable.

Much detailed work has been carried out on the question, which is in no sense solved in general. Some of this is based on constructing G geometrically as a Galois covering of the projective line: in algebraic terms, starting with an extension of the field of rational functions in an indeterminate t. After that, one applies Hilbert's irreducibility theorem to specialise t, in such a way as to preserve the Galois group.

All permutation groups of degree 16 or less are known to be realizable over ; [4] the group PSL(2,16):2 of degree 17 may not be. [5]

All 13 non-abelian simple groups smaller than PSL(2,25) (order 7800) are known to be realizable over . [6]

A simple example: cyclic groups

It is possible, using classical results, to construct explicitly a polynomial whose Galois group over is the cyclic group Z/nZ for any positive integer n. To do this, choose a prime p such that p ≡ 1 (mod n); this is possible by Dirichlet's theorem. Let Q(μ) be the cyclotomic extension of generated by μ, where μ is a primitive p-th root of unity; the Galois group of Q(μ)/Q is cyclic of order p − 1.

Since n divides p − 1, the Galois group has a cyclic subgroup H of order (p − 1)/n. The fundamental theorem of Galois theory implies that the corresponding fixed field, F = Q(μ)H, has Galois group Z/nZ over . By taking appropriate sums of conjugates of μ, following the construction of Gaussian periods, one can find an element α of F that generates F over , and compute its minimal polynomial.

This method can be extended to cover all finite abelian groups, since every such group appears in fact as a quotient of the Galois group of some cyclotomic extension of . (This statement should not though be confused with the Kronecker–Weber theorem, which lies significantly deeper.)

Worked example: the cyclic group of order three

For n = 3, we may take p = 7. Then Gal(Q(μ)/Q) is cyclic of order six. Let us take the generator η of this group which sends μ to μ3. We are interested in the subgroup H = {1, η3} of order two. Consider the element α = μ + η3(μ). By construction, α is fixed by H, and only has three conjugates over :

α = η0(α) = μ + μ6,
β = η1(α) = μ3 + μ4,
γ = η2(α) = μ2 + μ5.

Using the identity:

1 + μ + μ2 + ⋯ + μ6 = 0,

one finds that

α + β + γ = −1,
αβ + βγ + γα = −2,
αβγ = 1.

Therefore α is a root of the polynomial

(xα)(xβ)(xγ) = x3 + x2 − 2x − 1,

which consequently has Galois group Z/3Z over .

Symmetric and alternating groups

Hilbert showed that all symmetric and alternating groups are represented as Galois groups of polynomials with rational coefficients.

The polynomial xn + ax + b has discriminant

We take the special case

f(x, s) = xnsxs.

Substituting a prime integer for s in f(x, s) gives a polynomial (called a specialization of f(x, s)) that by Eisenstein's criterion is irreducible. Then f(x, s) must be irreducible over . Furthermore, f(x, s) can be written

and f(x, 1/2) can be factored to:

whose second factor is irreducible (but not by Eisenstein's criterion). Only the reciprocal polynomial is irreducible by Eisenstein's criterion. We have now shown that the group Gal(f(x, s)/Q(s)) is doubly transitive.

We can then find that this Galois group has a transposition. Use the scaling (1 − n)x = ny to get

and with

we arrive at:

g(y, t) = ynnty + (n − 1)t

which can be arranged to

yny − (n − 1)(y − 1) + (t − 1)(−ny + n − 1).

Then g(y, 1) has 1 as a double zero and its other n − 2 zeros are simple, and a transposition in Gal(f(x, s)/Q(s)) is implied. Any finite doubly transitive permutation group containing a transposition is a full symmetric group.

Hilbert's irreducibility theorem then implies that an infinite set of rational numbers give specializations of f(x, t) whose Galois groups are Sn over the rational field . In fact this set of rational numbers is dense in .

The discriminant of g(y, t) equals

and this is not in general a perfect square.

Alternating groups

Solutions for alternating groups must be handled differently for odd and even degrees.

Odd Degree

Let

Under this substitution the discriminant of g(y, t) equals

which is a perfect square when n is odd.

Even Degree

Let:

Under this substitution the discriminant of g(y, t) equals:

which is a perfect square when n is even.

Again, Hilbert's irreducibility theorem implies the existence of infinitely many specializations whose Galois groups are alternating groups.

Rigid groups

Suppose that C1, …, Cn are conjugacy classes of a finite group G, and A be the set of n-tuples (g1, …, gn) of G such that gi is in Ci and the product g1gn is trivial. Then A is called rigid if it is nonempty, G acts transitively on it by conjugation, and each element of A generates G.

Thompson (1984) showed that if a finite group G has a rigid set then it can often be realized as a Galois group over a cyclotomic extension of the rationals. (More precisely, over the cyclotomic extension of the rationals generated by the values of the irreducible characters of G on the conjugacy classes Ci.)

This can be used to show that many finite simple groups, including the monster group, are Galois groups of extensions of the rationals. The monster group is generated by a triad of elements of orders 2, 3, and 29. All such triads are conjugate.

The prototype for rigidity is the symmetric group Sn, which is generated by an n-cycle and a transposition whose product is an (n − 1)-cycle. The construction in the preceding section used these generators to establish a polynomial's Galois group.

A construction with an elliptic modular function

Let n > 1 be any integer. A lattice Λ in the complex plane with period ratio τ has a sublattice Λ′ with period ratio . The latter lattice is one of a finite set of sublattices permuted by the modular group PSL(2, Z), which is based on changes of basis for Λ. Let j denote the elliptic modular function of Felix Klein. Define the polynomial φn as the product of the differences (Xji)) over the conjugate sublattices. As a polynomial in X, φn has coefficients that are polynomials over in j(τ).

On the conjugate lattices, the modular group acts as PGL(2, Z/nZ). It follows that φn has Galois group isomorphic to PGL(2, Z/nZ) over .

Use of Hilbert's irreducibility theorem gives an infinite (and dense) set of rational numbers specializing φn to polynomials with Galois group PGL(2, Z/nZ) over . The groups PGL(2, Z/nZ) include infinitely many non-solvable groups.

See also

Notes

  1. "Mathematical Sciences Research Institute Publications 45" (PDF). MSRI.
  2. Igor R. Shafarevich, The imbedding problem for splitting extensions, Dokl. Akad. Nauk SSSR 120 (1958), 1217-1219.
  3. p. 5 of Jensen et al., 2002
  4. "Home". galoisdb.math.upb.de.
  5. "Choose a group".
  6. Malle and Matzat (1999), pp. 403-424

Related Research Articles

In mathematics, a finite field or Galois field is a field that contains a finite number of elements. As with any field, a finite field is a set on which the operations of multiplication, addition, subtraction and division are defined and satisfy certain basic rules. The most common examples of finite fields are given by the integers mod p when p is a prime number.

In mathematics, particularly in algebra, a field extension is a pair of fields such that the operations of K are those of L restricted to K. In this case, L is an extension field of K and K is a subfield of L. For example, under the usual notions of addition and multiplication, the complex numbers are an extension field of the real numbers; the real numbers are a subfield of the complex numbers.

In mathematics, in the area of abstract algebra known as Galois theory, the Galois group of a certain type of field extension is a specific group associated with the field extension. The study of field extensions and their relationship to the polynomials that give rise to them via Galois groups is called Galois theory, so named in honor of Évariste Galois who first discovered them.

In algebraic number theory, an algebraic integer is a complex number which is integral over the integers. That is, an algebraic integer is a complex root of some monic polynomial whose coefficients are integers. The set of all algebraic integers A is closed under addition, subtraction and multiplication and therefore is a commutative subring of the complex numbers.

<span class="mw-page-title-main">Solvable group</span> Group that can be constructed from abelian groups using extensions

In mathematics, more specifically in the field of group theory, a solvable group or soluble group is a group that can be constructed from abelian groups using extensions. Equivalently, a solvable group is a group whose derived series terminates in the trivial subgroup.

<span class="mw-page-title-main">Quaternion group</span> Non-abelian group of order eight

In group theory, the quaternion group Q8 (sometimes just denoted by Q) is a non-abelian group of order eight, isomorphic to the eight-element subset of the quaternions under multiplication. It is given by the group presentation

<span class="mw-page-title-main">Root of unity</span> Number that has an integer power equal to 1

In mathematics, a root of unity, occasionally called a de Moivre number, is any complex number that yields 1 when raised to some positive integer power n. Roots of unity are used in many branches of mathematics, and are especially important in number theory, the theory of group characters, and the discrete Fourier transform.

In mathematics, an irreducible polynomial is, roughly speaking, a polynomial that cannot be factored into the product of two non-constant polynomials. The property of irreducibility depends on the nature of the coefficients that are accepted for the possible factors, that is, the field to which the coefficients of the polynomial and its possible factors are supposed to belong. For example, the polynomial x2 − 2 is a polynomial with integer coefficients, but, as every integer is also a real number, it is also a polynomial with real coefficients. It is irreducible if it is considered as a polynomial with integer coefficients, but it factors as if it is considered as a polynomial with real coefficients. One says that the polynomial x2 − 2 is irreducible over the integers but not over the reals.

<span class="mw-page-title-main">Algebraic curve</span> Curve defined as zeros of polynomials

In mathematics, an affine algebraic plane curve is the zero set of a polynomial in two variables. A projective algebraic plane curve is the zero set in a projective plane of a homogeneous polynomial in three variables. An affine algebraic plane curve can be completed in a projective algebraic plane curve by homogenizing its defining polynomial. Conversely, a projective algebraic plane curve of homogeneous equation h(x, y, t) = 0 can be restricted to the affine algebraic plane curve of equation h(x, y, 1) = 0. These two operations are each inverse to the other; therefore, the phrase algebraic plane curve is often used without specifying explicitly whether it is the affine or the projective case that is considered.

In field theory, a branch of algebra, an algebraic field extension is called a separable extension if for every , the minimal polynomial of over F is a separable polynomial. There is also a more general definition that applies when E is not necessarily algebraic over F. An extension that is not separable is said to be inseparable.

In combinatorial mathematics, the necklace polynomial, or Moreau's necklace-counting function, introduced by C. Moreau (1872), counts the number of distinct necklaces of n colored beads chosen out of α available colors, arranged in a cycle. Unlike the usual problem of graph coloring, the necklaces are assumed to be aperiodic, and counted up to rotation, but without flipping over. This counting function also describes the dimensions in a free Lie algebra and the number of irreducible polynomials over a finite field.

In field theory, the primitive element theorem is a result characterizing the finite degree field extensions that can be generated by a single element. Such a generating element is called a primitive element of the field extension, and the extension is called a simple extension in this case. The theorem states that a finite extension is simple if and only if there are only finitely many intermediate fields. An older result, also often called "primitive element theorem", states that every finite separable extension is simple; it can be seen as a consequence of the former theorem. These theorems imply in particular that all algebraic number fields over the rational numbers, and all extensions in which both fields are finite, are simple.

Chebotarev's density theorem in algebraic number theory describes statistically the splitting of primes in a given Galois extension K of the field of rational numbers. Generally speaking, a prime integer will factor into several ideal primes in the ring of algebraic integers of K. There are only finitely many patterns of splitting that may occur. Although the full description of the splitting of every prime p in a general Galois extension is a major unsolved problem, the Chebotarev density theorem says that the frequency of the occurrence of a given pattern, for all primes p less than a large integer N, tends to a certain limit as N goes to infinity. It was proved by Nikolai Chebotaryov in his thesis in 1922, published in.

In abstract algebra and number theory, Kummer theory provides a description of certain types of field extensions involving the adjunction of nth roots of elements of the base field. The theory was originally developed by Ernst Eduard Kummer around the 1840s in his pioneering work on Fermat's Last Theorem. The main statements do not depend on the nature of the field – apart from its characteristic, which should not divide the integer n – and therefore belong to abstract algebra. The theory of cyclic extensions of the field K when the characteristic of K does divide n is called Artin–Schreier theory.

In mathematics, specifically the algebraic theory of fields, a normal basis is a special kind of basis for Galois extensions of finite degree, characterised as forming a single orbit for the Galois group. The normal basis theorem states that any finite Galois extension of fields has a normal basis. In algebraic number theory, the study of the more refined question of the existence of a normal integral basis is part of Galois module theory.

In mathematics, the fundamental theorem of Galois theory is a result that describes the structure of certain types of field extensions in relation to groups. It was proved by Évariste Galois in his development of Galois theory.

In number theory, Hilbert's irreducibility theorem, conceived by David Hilbert in 1892, states that every finite set of irreducible polynomials in a finite number of variables and having rational number coefficients admit a common specialization of a proper subset of the variables to rational numbers such that all the polynomials remain irreducible. This theorem is a prominent theorem in number theory.

In mathematics and computer algebra, factorization of polynomials or polynomial factorization expresses a polynomial with coefficients in a given field or in the integers as the product of irreducible factors with coefficients in the same domain. Polynomial factorization is one of the fundamental components of computer algebra systems.

<span class="mw-page-title-main">Algebraic number field</span> Finite degree (and hence algebraic) field extension of the field of rational numbers

In mathematics, an algebraic number field is an extension field of the field of rational numbers such that the field extension has finite degree . Thus is a field that contains and has finite dimension when considered as a vector space over .

In mathematics and computer algebra the factorization of a polynomial consists of decomposing it into a product of irreducible factors. This decomposition is theoretically possible and is unique for polynomials with coefficients in any field, but rather strong restrictions on the field of the coefficients are needed to allow the computation of the factorization by means of an algorithm. In practice, algorithms have been designed only for polynomials with coefficients in a finite field, in the field of rationals or in a finitely generated field extension of one of them.

References