List of unsolved problems in mathematics

Last updated

Many mathematical problems have been stated but not yet solved. These problems come from many areas of mathematics, such as theoretical physics, computer science, algebra, analysis, combinatorics, algebraic, differential, discrete and Euclidean geometries, graph theory, group theory, model theory, number theory, set theory, Ramsey theory, dynamical systems, and partial differential equations. Some problems belong to more than one discipline and are studied using techniques from different areas. Prizes are often awarded for the solution to a long-standing problem, and some lists of unsolved problems, such as the Millennium Prize Problems, receive considerable attention.

Contents

This list is a composite of notable unsolved problems mentioned in previously published lists, including but not limited to lists considered authoritative. Although this list may never be comprehensive, the problems listed here vary widely in both difficulty and importance.

Lists of unsolved problems in mathematics

Various mathematicians and organizations have published and promoted lists of unsolved mathematical problems. In some cases, the lists have been associated with prizes for the discoverers of solutions.

ListNumber of
problems
Number unsolved
or incompletely solved
Proposed byProposed
in
Hilbert's problems [1] 2315 David Hilbert 1900
Landau's problems [2] 44 Edmund Landau 1912
Taniyama's problems [3] 36- Yutaka Taniyama 1955
Thurston's 24 questions [4] [5] 24- William Thurston 1982
Smale's problems 1814 Stephen Smale 1998
Millennium Prize Problems 76 [6] Clay Mathematics Institute 2000
Simon problems 15<12 [7] [8] Barry Simon 2000
Unsolved Problems on Mathematics for the 21st Century [9] 22-Jair Minoro Abe, Shotaro Tanaka2001
DARPA's math challenges [10] [11] 23- DARPA 2007
The Riemann zeta function, subject of the celebrated and influential unsolved problem known as the Riemann hypothesis Riemann-Zeta-Func.png
The Riemann zeta function, subject of the celebrated and influential unsolved problem known as the Riemann hypothesis

Millennium Prize Problems

Of the original seven Millennium Prize Problems listed by the Clay Mathematics Institute in 2000, six remain unsolved to date: [6]

The seventh problem, the Poincaré conjecture, was solved by Grigori Perelman in 2003. [12] However, a generalization called the smooth four-dimensional Poincaré conjecture—that is, whether a four-dimensional topological sphere can have two or more inequivalent smooth structures—is unsolved. [13]

Notebooks

Unsolved problems

Algebra

In the Bloch sphere representation of a qubit, a SIC-POVM forms a regular tetrahedron. Zauner conjectured that analogous structures exist in complex Hilbert spaces of all finite dimensions. Regular tetrahedron inscribed in a sphere.svg
In the Bloch sphere representation of a qubit, a SIC-POVM forms a regular tetrahedron. Zauner conjectured that analogous structures exist in complex Hilbert spaces of all finite dimensions.

Group theory

The free Burnside group
B
(
2
,
3
)
{\displaystyle B(2,3)}
is finite; in its Cayley graph, shown here, each of its 27 elements is represented by a vertex. The question of which other groups
B
(
m
,
n
)
{\displaystyle B(m,n)}
are finite remains open. FreeBurnsideGroupExp3Gens2.png
The free Burnside group is finite; in its Cayley graph, shown here, each of its 27 elements is represented by a vertex. The question of which other groups are finite remains open.

Representation theory

Analysis

The area of the blue region converges to the Euler-Mascheroni constant, which may or may not be a rational number. Gamma-area.svg
The area of the blue region converges to the Euler–Mascheroni constant, which may or may not be a rational number.

Transcendental numbers and diophantine approximation

Combinatorics

Dynamical systems

A detail of the Mandelbrot set. It is not known whether the Mandelbrot set is locally connected or not. Mandel zoom 07 satellite.jpg
A detail of the Mandelbrot set. It is not known whether the Mandelbrot set is locally connected or not.

Games and puzzles

Combinatorial games

Games with imperfect information

Geometry

Algebraic geometry

Covering and packing

Differential geometry

Discrete geometry

In three dimensions, the kissing number is 12, because 12 non-overlapping unit spheres can be put into contact with a central unit sphere. (Here, the centers of outer spheres form the vertices of a regular icosahedron.) Kissing numbers are only known exactly in dimensions 1, 2, 3, 4, 8 and 24. Kissing-3d.png
In three dimensions, the kissing number is 12, because 12 non-overlapping unit spheres can be put into contact with a central unit sphere. (Here, the centers of outer spheres form the vertices of a regular icosahedron.) Kissing numbers are only known exactly in dimensions 1, 2, 3, 4, 8 and 24.

Euclidean geometry

Graph theory

Algebraic graph theory

Games on graphs

Graph coloring and labeling

An instance of the Erdos-Faber-Lovasz conjecture: a graph formed from four cliques of four vertices each, any two of which intersect in a single vertex, can be four-colored. Erdos-Faber-Lovasz conjecture.svg
An instance of the Erdős–Faber–Lovász conjecture: a graph formed from four cliques of four vertices each, any two of which intersect in a single vertex, can be four-colored.

Graph drawing and embedding

Restriction of graph parameters

Subgraphs

Word-representation of graphs

Miscellaneous graph theory

Model theory and formal languages

Probability theory

Number theory

General

6 is a perfect number because it is the sum of its proper positive divisors, 1, 2 and 3. It is not known how many perfect numbers there are, nor if any of them is odd. Perfect number Cuisenaire rods 6 exact.svg
6 is a perfect number because it is the sum of its proper positive divisors, 1, 2 and 3. It is not known how many perfect numbers there are, nor if any of them is odd.

Additive number theory

Algebraic number theory

  • Characterize all algebraic number fields that have some power basis.

Computational number theory

Diophantine equations

Prime numbers

Goldbach's conjecture states that all even integers greater than 2 can be written as the sum of two primes. Here this is illustrated for the even integers from 4 to 28. Goldbach partitions of the even integers from 4 to 50 rev4b.svg
Goldbach's conjecture states that all even integers greater than 2 can be written as the sum of two primes. Here this is illustrated for the even integers from 4 to 28.

Set theory

Note: These conjectures are about models of Zermelo-Frankel set theory with choice, and may not be able to be expressed in models of other set theories such as the various constructive set theories or non-wellfounded set theory.

Topology

The unknotting problem asks whether there is an efficient algorithm to identify when the shape presented in a knot diagram is actually the unknot. Ochiai unknot.svg
The unknotting problem asks whether there is an efficient algorithm to identify when the shape presented in a knot diagram is actually the unknot.

Problems solved since 1995

Ricci flow, here illustrated with a 2D manifold, was the key tool in Grigori Perelman's solution of the Poincare conjecture. Ricci flow.png
Ricci flow, here illustrated with a 2D manifold, was the key tool in Grigori Perelman's solution of the Poincaré conjecture.

Algebra

Analysis

Combinatorics

Dynamical systems

Game theory

Geometry

21st century

20th century

Graph theory

Group theory

Number theory

21st century

20th century

Ramsey theory

Theoretical computer science

Topology

Uncategorised

2010s

2000s

See also

Notes

  1. An aperiodic monotile has been discovered and the formal proof is awaiting publication. A preprint of the proof is available. [72]
  2. A disproof has been announced, with a preprint made available on arXiv. [159]

Related Research Articles

<span class="mw-page-title-main">Carmichael number</span> Composite number in number theory

In number theory, a Carmichael number is a composite number which in modular arithmetic satisfies the congruence relation:

A twin prime is a prime number that is either 2 less or 2 more than another prime number—for example, either member of the twin prime pair or (41, 43). In other words, a twin prime is a prime that has a prime gap of two. Sometimes the term twin prime is used for a pair of twin primes; an alternative name for this is prime twin or prime pair.

In combinatorics, Ramsey's theorem, in one of its graph-theoretic forms, states that one will find monochromatic cliques in any edge labelling (with colours) of a sufficiently large complete graph. To demonstrate the theorem for two colours (say, blue and red), let r and s be any two positive integers. Ramsey's theorem states that there exists a least positive integer R(r, s) for which every blue-red edge colouring of the complete graph on R(r, s) vertices contains a blue clique on r vertices or a red clique on s vertices. (Here R(r, s) signifies an integer that depends on both r and s.)

In arithmetic combinatorics, Szemerédi's theorem is a result concerning arithmetic progressions in subsets of the integers. In 1936, Erdős and Turán conjectured that every set of integers A with positive natural density contains a k-term arithmetic progression for every k. Endre Szemerédi proved the conjecture in 1975.

<span class="mw-page-title-main">Ben Green (mathematician)</span> British mathematician (born 1977)

Ben Joseph Green FRS is a British mathematician, specialising in combinatorics and number theory. He is the Waynflete Professor of Pure Mathematics at the University of Oxford.

In mathematics, a covering system is a collection

In mathematics, the Burr–Erdős conjecture was a problem concerning the Ramsey number of sparse graphs. The conjecture is named after Stefan Burr and Paul Erdős, and is one of many conjectures named after Erdős; it states that the Ramsey number of graphs in any sparse family of graphs should grow linearly in the number of vertices of the graph.

In combinatorial number theory, the Erdős–Graham problem is the problem of proving that, if the set of integers greater than one is partitioned into finitely many subsets, then one of the subsets can be used to form an Egyptian fraction representation of unity. That is, for every , and every -coloring of the integers greater than one, there is a finite monochromatic subset of these integers such that

Erdős' conjecture on arithmetic progressions, often referred to as the Erdős–Turán conjecture, is a conjecture in arithmetic combinatorics. It states that if the sum of the reciprocals of the members of a set A of positive integers diverges, then A contains arbitrarily long arithmetic progressions.

<span class="mw-page-title-main">Prime gap</span> Difference between two successive prime numbers

A prime gap is the difference between two successive prime numbers. The n-th prime gap, denoted gn or g(pn) is the difference between the (n + 1)-st and the n-th prime numbers, i.e.

<span class="mw-page-title-main">Landau's problems</span> Four basic unsolved problems about prime numbers

At the 1912 International Congress of Mathematicians, Edmund Landau listed four basic problems about prime numbers. These problems were characterised in his speech as "unattackable at the present state of mathematics" and are now known as Landau's problems. They are as follows:

  1. Goldbach's conjecture: Can every even integer greater than 2 be written as the sum of two primes?
  2. Twin prime conjecture: Are there infinitely many primes p such that p + 2 is prime?
  3. Legendre's conjecture: Does there always exist at least one prime between consecutive perfect squares?
  4. Are there infinitely many primes p such that p − 1 is a perfect square? In other words: Are there infinitely many primes of the form n2 + 1?

In number theory, the Green–Tao theorem, proved by Ben Green and Terence Tao in 2004, states that the sequence of prime numbers contains arbitrarily long arithmetic progressions. In other words, for every natural number k, there exist arithmetic progressions of primes with k terms. The proof is an extension of Szemerédi's theorem. The problem can be traced back to investigations of Lagrange and Waring from around 1770.

Arithmetic dynamics is a field that amalgamates two areas of mathematics, dynamical systems and number theory. Part of the inspiration comes from complex dynamics, the study of the iteration of self-maps of the complex plane or other complex algebraic varieties. Arithmetic dynamics is the study of the number-theoretic properties of integer, rational, p-adic, or algebraic points under repeated application of a polynomial or rational function. A fundamental goal is to describe arithmetic properties in terms of underlying geometric structures.

In mathematics, arithmetic combinatorics is a field in the intersection of number theory, combinatorics, ergodic theory and harmonic analysis.

In number theory, a Sidon sequence is a sequence of natural numbers in which all pairwise sums (for ) are different. Sidon sequences are also called Sidon sets; they are named after the Hungarian mathematician Simon Sidon, who introduced the concept in his investigations of Fourier series.

In mathematics, the Erdős–Ulam problem asks whether the plane contains a dense set of points whose Euclidean distances are all rational numbers. It is named after Paul Erdős and Stanislaw Ulam.

In geometry, the distance set of a collection of points is the set of distances between distinct pairs of points. Thus, it can be seen as the generalization of a difference set, the set of distances in collections of numbers.

<span class="mw-page-title-main">Salem–Spencer set</span> Progression-free set of numbers

In mathematics, and in particular in arithmetic combinatorics, a Salem-Spencer set is a set of numbers no three of which form an arithmetic progression. Salem–Spencer sets are also called 3-AP-free sequences or progression-free sets. They have also been called non-averaging sets, but this term has also been used to denote a set of integers none of which can be obtained as the average of any subset of the other numbers. Salem-Spencer sets are named after Raphaël Salem and Donald C. Spencer, who showed in 1942 that Salem–Spencer sets can have nearly-linear size. However a later theorem of Klaus Roth shows that the size is always less than linear.

Hunter Snevily (1956–2013) was an American mathematician with expertise and contributions in Set theory, Graph theory, Discrete geometry, and Ramsey theory on the integers.

References

  1. Thiele, Rüdiger (2005), "On Hilbert and his twenty-four problems", in Van Brummelen, Glen (ed.), Mathematics and the historian's craft. The Kenneth O. May Lectures, CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC, vol. 21, pp. 243–295, ISBN   978-0-387-25284-1
  2. Guy, Richard (1994), Unsolved Problems in Number Theory (2nd ed.), Springer, p. vii, ISBN   978-1-4899-3585-4, archived from the original on 2019-03-23, retrieved 2016-09-22.
  3. Shimura, G. (1989). "Yutaka Taniyama and his time". Bulletin of the London Mathematical Society. 21 (2): 186–196. doi:10.1112/blms/21.2.186.
  4. Friedl, Stefan (2014). "Thurston's vision and the virtual fibering theorem for 3-manifolds". Jahresbericht der Deutschen Mathematiker-Vereinigung. 116 (4): 223–241. doi:10.1365/s13291-014-0102-x. MR   3280572. S2CID   56322745.
  5. Thurston, William P. (1982). "Three-dimensional manifolds, Kleinian groups and hyperbolic geometry". Bulletin of the American Mathematical Society. New Series. 6 (3): 357–381. doi:10.1090/S0273-0979-1982-15003-0. MR   0648524.
  6. 1 2 "Millennium Problems". claymath.org. Archived from the original on 2017-06-06. Retrieved 2015-01-20.
  7. "Fields Medal awarded to Artur Avila". Centre national de la recherche scientifique . 2014-08-13. Archived from the original on 2018-07-10. Retrieved 2018-07-07.
  8. Bellos, Alex (2014-08-13). "Fields Medals 2014: the maths of Avila, Bhargava, Hairer and Mirzakhani explained". The Guardian . Archived from the original on 2016-10-21. Retrieved 2018-07-07.
  9. Abe, Jair Minoro; Tanaka, Shotaro (2001). Unsolved Problems on Mathematics for the 21st Century. IOS Press. ISBN   978-90-5199-490-2.
  10. "DARPA invests in math". CNN. 2008-10-14. Archived from the original on 2009-03-04. Retrieved 2013-01-14.
  11. "Broad Agency Announcement (BAA 07-68) for Defense Sciences Office (DSO)". DARPA. 2007-09-10. Archived from the original on 2012-10-01. Retrieved 2013-06-25.
  12. "Poincaré Conjecture". Clay Mathematics Institute. Archived from the original on 2013-12-15.
  13. rybu (November 7, 2009). "Smooth 4-dimensional Poincare conjecture". Open Problem Garden. Archived from the original on 2018-01-25. Retrieved 2019-08-06.
  14. Khukhro, Evgeny I.; Mazurov, Victor D. (2019), Unsolved Problems in Group Theory. The Kourovka Notebook, arXiv: 1401.0300v16
  15. RSFSR, MV i SSO; Russie), Uralʹskij gosudarstvennyj universitet im A. M. Gorʹkogo (Ekaterinbourg (1969). Свердловская тетрадь: нерешенные задачи теории подгрупп (in Russian). S. l.
  16. Свердловская тетрадь: Сб. нерешённых задач по теории полугрупп. Свердловск: Уральский государственный университет. 1979.
  17. Свердловская тетрадь: Сб. нерешённых задач по теории полугрупп. Свердловск: Уральский государственный университет. 1989.
  18. ДНЕСТРОВСКАЯ ТЕТРАДЬ [DNIESTER NOTEBOOK](PDF) (in Russian), The Russian Academy of Sciences, 1993
  19. "DNIESTER NOTEBOOK: Unsolved Problems in the Theory of Rings and Modules" (PDF), University of Saskatchewan , retrieved 2019-08-15
  20. Эрлагольская тетрадь [Erlagol notebook](PDF) (in Russian), The Novosibirsk State University, 2018
  21. Dowling, T. A. (February 1973). "A class of geometric lattices based on finite groups". Journal of Combinatorial Theory . Series B. 14 (1): 61–86. doi: 10.1016/S0095-8956(73)80007-3 .
  22. Aschbacher, Michael (1990), "On Conjectures of Guralnick and Thompson", Journal of Algebra , 135 (2): 277–343, doi:10.1016/0021-8693(90)90292-V
  23. Kung, H. T.; Traub, Joseph Frederick (1974), "Optimal order of one-point and multipoint iteration", Journal of the ACM , 21 (4): 643–651, doi:10.1145/321850.321860, S2CID   74921
  24. Smyth, Chris (2008), "The Mahler measure of algebraic numbers: a survey", in McKee, James; Smyth, Chris (eds.), Number Theory and Polynomials, London Mathematical Society Lecture Note Series, vol. 352, Cambridge University Press, pp. 322–349, ISBN   978-0-521-71467-9
  25. Berenstein, Carlos A. (2001) [1994], "Pompeiu problem", Encyclopedia of Mathematics , EMS Press
  26. 1 2 Waldschmidt, Michel (2013), Diophantine Approximation on Linear Algebraic Groups: Transcendence Properties of the Exponential Function in Several Variables, Springer, pp. 14, 16, ISBN   978-3-662-11569-5
  27. For some background on the numbers in this problem, see articles by Eric W. Weisstein at WolframMathWorld (all articles accessed 15 December 2014):
  28. Waldschmidt, Michel (2008). An introduction to irrationality and transcendence methods (PDF). 2008 Arizona Winter School. Archived from the original (PDF) on 16 December 2014. Retrieved 15 December 2014.
  29. Albert, John, Some unsolved problems in number theory (PDF), archived from the original (PDF) on 17 January 2014, retrieved 15 December 2014
  30. Brightwell, Graham R.; Felsner, Stefan; Trotter, William T. (1995), "Balancing pairs and the cross product conjecture", Order , 12 (4): 327–349, CiteSeerX   10.1.1.38.7841 , doi:10.1007/BF01110378, MR   1368815, S2CID   14793475 .
  31. Tao, Terence (2018). "Some remarks on the lonely runner conjecture". Contributions to Discrete Mathematics. 13 (2): 1–31. arXiv: 1701.02048 . doi: 10.11575/cdm.v13i2.62728 .
  32. González-Jiménez, Enrique; Xarles, Xavier (2014). "On a conjecture of Rudin on squares in arithmetic progressions". LMS Journal of Computation and Mathematics. 17 (1): 58–76. arXiv: 1301.5122 . doi:10.1112/S1461157013000259. S2CID   11615385.
  33. Bruhn, Henning; Schaudt, Oliver (2015), "The journey of the union-closed sets conjecture" (PDF), Graphs and Combinatorics, 31 (6): 2043–2074, arXiv: 1309.3297 , doi:10.1007/s00373-014-1515-0, MR   3417215, S2CID   17531822, archived (PDF) from the original on 2017-08-08, retrieved 2017-07-18
  34. Murnaghan, F. D. (1938), "The Analysis of the Direct Product of Irreducible Representations of the Symmetric Groups", American Journal of Mathematics , 60 (1): 44–65, doi:10.2307/2371542, JSTOR   2371542, MR   1507301, PMC   1076971 , PMID   16577800
  35. "Dedekind Numbers and Related Sequences" (PDF). Archived from the original (PDF) on 2015-03-15. Retrieved 2020-04-30.
  36. Liśkiewicz, Maciej; Ogihara, Mitsunori; Toda, Seinosuke (2003-07-28). "The complexity of counting self-avoiding walks in subgraphs of two-dimensional grids and hypercubes". Theoretical Computer Science. 304 (1): 129–156. doi:10.1016/S0304-3975(03)00080-X. S2CID   33806100.
  37. S. M. Ulam, Problems in Modern Mathematics. Science Editions John Wiley & Sons, Inc., New York, 1964, page 76.
  38. Kaloshin, Vadim; Sorrentino, Alfonso (2018). "On the local Birkhoff conjecture for convex billiards". Annals of Mathematics . 188 (1): 315–380. arXiv: 1612.09194 . doi:10.4007/annals.2018.188.1.6. S2CID   119171182.
  39. Sarnak, Peter (2011), "Recent progress on the quantum unique ergodicity conjecture", Bulletin of the American Mathematical Society , 48 (2): 211–228, doi: 10.1090/S0273-0979-2011-01323-4 , MR   2774090
  40. Paul Halmos, Ergodic theory. Chelsea, New York, 1956.
  41. Kari, Jarkko (2009). "Structure of reversible cellular automata". Structure of Reversible Cellular Automata. International Conference on Unconventional Computation. Lecture Notes in Computer Science. Vol. 5715. Springer. p. 6. Bibcode:2009LNCS.5715....6K. doi: 10.1007/978-3-642-03745-0_5 . ISBN   978-3-642-03744-3.
  42. 1 2 3 "Open Q - Solving and rating of hard Sudoku". english.log-it-ex.com. Archived from the original on 10 November 2017.
  43. "Higher-Dimensional Tic-Tac-Toe". PBS Infinite Series . YouTube. 2017-09-21. Archived from the original on 2017-10-11. Retrieved 2018-07-29.
  44. Barlet, Daniel; Peternell, Thomas; Schneider, Michael (1990). "On two conjectures of Hartshorne's". Mathematische Annalen . 286 (1–3): 13–25. doi:10.1007/BF01453563. S2CID   122151259.
  45. Maulik, Davesh; Nekrasov, Nikita; Okounov, Andrei; Pandharipande, Rahul (2004-06-05), Gromov–Witten theory and Donaldson–Thomas theory, I, arXiv: math/0312059 , Bibcode:2003math.....12059M
  46. Zariski, Oscar (1971). "Some open questions in the theory of singularities". Bulletin of the American Mathematical Society . 77 (4): 481–491. doi: 10.1090/S0002-9904-1971-12729-5 . MR   0277533.
  47. Bereg, Sergey; Dumitrescu, Adrian; Jiang, Minghui (2010), "On covering problems of Rado", Algorithmica, 57 (3): 538–561, doi:10.1007/s00453-009-9298-z, MR   2609053, S2CID   6511998
  48. Melissen, Hans (1993), "Densest packings of congruent circles in an equilateral triangle", American Mathematical Monthly, 100 (10): 916–925, doi:10.2307/2324212, JSTOR   2324212, MR   1252928
  49. Conway, John H.; Neil J.A. Sloane (1999), Sphere Packings, Lattices and Groups (3rd ed.), New York: Springer-Verlag, pp.  21–22, ISBN   978-0-387-98585-5
  50. Hales, Thomas (2017), The Reinhardt conjecture as an optimal control problem, arXiv: 1703.01352
  51. Brass, Peter; Moser, William; Pach, János (2005), Research Problems in Discrete Geometry, New York: Springer, p. 45, ISBN   978-0387-23815-9, MR   2163782
  52. Gardner, Martin (1995), New Mathematical Diversions (Revised Edition), Washington: Mathematical Association of America, p. 251
  53. Barros, Manuel (1997), "General Helices and a Theorem of Lancret", Proceedings of the American Mathematical Society , 125 (5): 1503–1509, doi: 10.1090/S0002-9939-97-03692-7 , JSTOR   2162098
  54. Katz, Mikhail G. (2007), Systolic geometry and topology, Mathematical Surveys and Monographs, vol. 137, American Mathematical Society, Providence, RI, p. 57, doi:10.1090/surv/137, ISBN   978-0-8218-4177-8, MR   2292367
  55. Rosenberg, Steven (1997), The Laplacian on a Riemannian Manifold: An introduction to analysis on manifolds, London Mathematical Society Student Texts, vol. 31, Cambridge: Cambridge University Press, pp. 62–63, doi:10.1017/CBO9780511623783, ISBN   978-0-521-46300-3, MR   1462892
  56. Ghosh, Subir Kumar; Goswami, Partha P. (2013), "Unsolved problems in visibility graphs of points, segments, and polygons", ACM Computing Surveys, 46 (2): 22:1–22:29, arXiv: 1012.5187 , doi:10.1145/2543581.2543589, S2CID   8747335
  57. Boltjansky, V.; Gohberg, I. (1985), "11. Hadwiger's Conjecture", Results and Problems in Combinatorial Geometry, Cambridge University Press, pp. 44–46.
  58. Morris, Walter D.; Soltan, Valeriu (2000), "The Erdős-Szekeres problem on points in convex position—a survey", Bull. Amer. Math. Soc., 37 (4): 437–458, doi: 10.1090/S0273-0979-00-00877-6 , MR   1779413 ; Suk, Andrew (2016), "On the Erdős–Szekeres convex polygon problem", J. Amer. Math. Soc., 30 (4): 1047–1053, arXiv: 1604.08657 , doi:10.1090/jams/869, S2CID   15732134
  59. Kalai, Gil (1989), "The number of faces of centrally-symmetric polytopes", Graphs and Combinatorics , 5 (1): 389–391, doi:10.1007/BF01788696, MR   1554357, S2CID   8917264 .
  60. Moreno, José Pedro; Prieto-Martínez, Luis Felipe (2021). "El problema de los triángulos de Kobon" [The Kobon triangles problem]. La Gaceta de la Real Sociedad Matemática Española (in Spanish). 24 (1): 111–130. hdl:10486/705416. MR   4225268.
  61. Guy, Richard K. (1983), "An olla-podrida of open problems, often oddly posed", American Mathematical Monthly , 90 (3): 196–200, doi:10.2307/2975549, JSTOR   2975549, MR   1540158
  62. Matoušek, Jiří (2002), Lectures on discrete geometry, Graduate Texts in Mathematics, vol. 212, Springer-Verlag, New York, p. 206, doi:10.1007/978-1-4613-0039-7, ISBN   978-0-387-95373-1, MR   1899299
  63. Brass, Peter; Moser, William; Pach, János (2005), "5.1 The Maximum Number of Unit Distances in the Plane", Research problems in discrete geometry, Springer, New York, pp. 183–190, ISBN   978-0-387-23815-9, MR   2163782
  64. Dey, Tamal K. (1998), "Improved bounds for planar k-sets and related problems", Discrete & Computational Geometry , 19 (3): 373–382, doi: 10.1007/PL00009354 , MR   1608878 ; Tóth, Gábor (2001), "Point sets with many k-sets", Discrete & Computational Geometry , 26 (2): 187–194, doi: 10.1007/s004540010022 , MR   1843435 .
  65. Aronov, Boris; Dujmović, Vida; Morin, Pat; Ooms, Aurélien; Schultz Xavier da Silveira, Luís Fernando (2019), "More Turán-type theorems for triangles in convex point sets", Electronic Journal of Combinatorics , 26 (1): P1.8, arXiv: 1706.10193 , Bibcode:2017arXiv170610193A, doi: 10.37236/7224 , archived from the original on 2019-02-18, retrieved 2019-02-18
  66. Atiyah, Michael (2001), "Configurations of points", Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 359 (1784): 1375–1387, Bibcode:2001RSPTA.359.1375A, doi:10.1098/rsta.2001.0840, ISSN   1364-503X, MR   1853626, S2CID   55833332
  67. Finch, S. R.; Wetzel, J. E. (2004), "Lost in a forest", American Mathematical Monthly , 11 (8): 645–654, doi:10.2307/4145038, JSTOR   4145038, MR   2091541
  68. Howards, Hugh Nelson (2013), "Forming the Borromean rings out of arbitrary polygonal unknots", Journal of Knot Theory and Its Ramifications, 22 (14): 1350083, 15, arXiv: 1406.3370 , doi:10.1142/S0218216513500831, MR   3190121, S2CID   119674622
  69. Solomon, Yaar; Weiss, Barak (2016), "Dense forests and Danzer sets", Annales Scientifiques de l'École Normale Supérieure, 49 (5): 1053–1074, arXiv: 1406.3807 , doi:10.24033/asens.2303, MR   3581810, S2CID   672315 ; Conway, John H., Five $1,000 Problems (Update 2017) (PDF), On-Line Encyclopedia of Integer Sequences, archived (PDF) from the original on 2019-02-13, retrieved 2019-02-12
  70. Brandts, Jan; Korotov, Sergey; Křížek, Michal; Šolc, Jakub (2009), "On nonobtuse simplicial partitions" (PDF), SIAM Review, 51 (2): 317–335, Bibcode:2009SIAMR..51..317B, doi:10.1137/060669073, MR   2505583, S2CID   216078793, archived (PDF) from the original on 2018-11-04, retrieved 2018-11-22. See in particular Conjecture 23, p. 327.
  71. Socolar, Joshua E. S.; Taylor, Joan M. (2012), "Forcing nonperiodicity with a single tile", The Mathematical Intelligencer, 34 (1): 18–28, arXiv: 1009.1419 , doi:10.1007/s00283-011-9255-y, MR   2902144, S2CID   10747746
  72. Smith, David; Myers, Joseph Samuel; Kaplan, Craig S.; Goodman-Strauss, Chaim (May 28, 2023). "A chiral aperiodic monotile". arXiv: 2305.17743 [math.CO].
  73. Arutyunyants, G.; Iosevich, A. (2004), "Falconer conjecture, spherical averages and discrete analogs", in Pach, János (ed.), Towards a Theory of Geometric Graphs, Contemp. Math., vol. 342, Amer. Math. Soc., Providence, RI, pp. 15–24, doi: 10.1090/conm/342/06127 , ISBN   978-0-8218-3484-8, MR   2065249
  74. Matschke, Benjamin (2014), "A survey on the square peg problem", Notices of the American Mathematical Society , 61 (4): 346–352, doi: 10.1090/noti1100
  75. Katz, Nets; Tao, Terence (2002), "Recent progress on the Kakeya conjecture", Proceedings of the 6th International Conference on Harmonic Analysis and Partial Differential Equations (El Escorial, 2000), Publicacions Matemàtiques, pp. 161–179, CiteSeerX   10.1.1.241.5335 , doi:10.5565/PUBLMAT_Esco02_07, MR   1964819, S2CID   77088
  76. Weaire, Denis, ed. (1997), The Kelvin Problem, CRC Press, p. 1, ISBN   978-0-7484-0632-6
  77. Brass, Peter; Moser, William; Pach, János (2005), Research problems in discrete geometry, New York: Springer, p. 457, ISBN   978-0-387-29929-7, MR   2163782
  78. Mahler, Kurt (1939). "Ein Minimalproblem für konvexe Polygone". Mathematica (Zutphen) B: 118–127.
  79. Norwood, Rick; Poole, George; Laidacker, Michael (1992), "The worm problem of Leo Moser", Discrete & Computational Geometry , 7 (2): 153–162, doi: 10.1007/BF02187832 , MR   1139077
  80. Wagner, Neal R. (1976), "The Sofa Problem" (PDF), The American Mathematical Monthly, 83 (3): 188–189, doi:10.2307/2977022, JSTOR   2977022, archived (PDF) from the original on 2015-04-20, retrieved 2014-05-14
  81. Chai, Ying; Yuan, Liping; Zamfirescu, Tudor (June–July 2018), "Rupert Property of Archimedean Solids", The American Mathematical Monthly , 125 (6): 497–504, doi:10.1080/00029890.2018.1449505, S2CID   125508192
  82. Steininger, Jakob; Yurkevich, Sergey (December 27, 2021), An algorithmic approach to Rupert's problem, arXiv: 2112.13754
  83. Demaine, Erik D.; O'Rourke, Joseph (2007), "Chapter 22. Edge Unfolding of Polyhedra", Geometric Folding Algorithms: Linkages, Origami, Polyhedra, Cambridge University Press, pp. 306–338
  84. Ghomi, Mohammad (2018-01-01). "Dürer's Unfolding Problem for Convex Polyhedra". Notices of the American Mathematical Society. 65 (1): 25–27. doi: 10.1090/noti1609 . ISSN   0002-9920.
  85. Whyte, L. L. (1952), "Unique arrangements of points on a sphere", The American Mathematical Monthly, 59 (9): 606–611, doi:10.2307/2306764, JSTOR   2306764, MR   0050303
  86. ACW (May 24, 2012), "Convex uniform 5-polytopes", Open Problem Garden, archived from the original on October 5, 2016, retrieved 2016-10-04.
  87. Pleanmani, Nopparat (2019), "Graham's pebbling conjecture holds for the product of a graph and a sufficiently large complete bipartite graph", Discrete Mathematics, Algorithms and Applications, 11 (6): 1950068, 7, doi:10.1142/s179383091950068x, MR   4044549, S2CID   204207428
  88. Baird, William; Bonato, Anthony (2012), "Meyniel's conjecture on the cop number: a survey", Journal of Combinatorics, 3 (2): 225–238, arXiv: 1308.3385 , doi:10.4310/JOC.2012.v3.n2.a6, MR   2980752, S2CID   18942362
  89. Bousquet, Nicolas; Bartier, Valentin (2019), "Linear Transformations Between Colorings in Chordal Graphs", in Bender, Michael A.; Svensson, Ola; Herman, Grzegorz (eds.), 27th Annual European Symposium on Algorithms, ESA 2019, September 9-11, 2019, Munich/Garching, Germany, LIPIcs, vol. 144, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, pp. 24:1–24:15, doi:10.4230/LIPIcs.ESA.2019.24, ISBN   978-3-95977-124-5, S2CID   195791634
  90. Gethner, Ellen (2018), "To the Moon and beyond", in Gera, Ralucca; Haynes, Teresa W.; Hedetniemi, Stephen T. (eds.), Graph Theory: Favorite Conjectures and Open Problems, II, Problem Books in Mathematics, Springer International Publishing, pp. 115–133, doi:10.1007/978-3-319-97686-0_11, ISBN   978-3-319-97684-6, MR   3930641
  91. Chung, Fan; Graham, Ron (1998), Erdős on Graphs: His Legacy of Unsolved Problems, A K Peters, pp. 97–99.
  92. Chudnovsky, Maria; Seymour, Paul (2014), "Extending the Gyárfás-Sumner conjecture", Journal of Combinatorial Theory , Series B, 105: 11–16, doi: 10.1016/j.jctb.2013.11.002 , MR   3171779
  93. Toft, Bjarne (1996), "A survey of Hadwiger's conjecture", Congressus Numerantium, 115: 249–283, MR   1411244 .
  94. Croft, Hallard T.; Falconer, Kenneth J.; Guy, Richard K. (1991), Unsolved Problems in Geometry, Springer-Verlag, Problem G10.
  95. Hägglund, Jonas; Steffen, Eckhard (2014), "Petersen-colorings and some families of snarks", Ars Mathematica Contemporanea, 7 (1): 161–173, doi: 10.26493/1855-3974.288.11a , MR   3047618, archived from the original on 2016-10-03, retrieved 2016-09-30.
  96. Jensen, Tommy R.; Toft, Bjarne (1995), "12.20 List-Edge-Chromatic Numbers", Graph Coloring Problems, New York: Wiley-Interscience, pp. 201–202, ISBN   978-0-471-02865-9 .
  97. Molloy, Michael; Reed, Bruce (1998), "A bound on the total chromatic number", Combinatorica , 18 (2): 241–280, CiteSeerX   10.1.1.24.6514 , doi:10.1007/PL00009820, MR   1656544, S2CID   9600550 .
  98. Barát, János; Tóth, Géza (2010), "Towards the Albertson Conjecture", Electronic Journal of Combinatorics, 17 (1): R73, arXiv: 0909.0413 , Bibcode:2009arXiv0909.0413B, doi: 10.37236/345 .
  99. Fulek, Radoslav; Pach, János (2011), "A computational approach to Conway's thrackle conjecture", Computational Geometry , 44 (6–7): 345–355, arXiv: 1002.3904 , doi: 10.1016/j.comgeo.2011.02.001 , MR   2785903 .
  100. Gupta, Anupam; Newman, Ilan; Rabinovich, Yuri; Sinclair, Alistair (2004), "Cuts, trees and -embeddings of graphs", Combinatorica , 24 (2): 233–269, CiteSeerX   10.1.1.698.8978 , doi:10.1007/s00493-004-0015-x, MR   2071334, S2CID   46133408
  101. Hartsfield, Nora; Ringel, Gerhard (2013), Pearls in Graph Theory: A Comprehensive Introduction, Dover Books on Mathematics, Courier Dover Publications, p. 247, ISBN   978-0-486-31552-2, MR   2047103 .
  102. Hliněný, Petr (2010), "20 years of Negami's planar cover conjecture" (PDF), Graphs and Combinatorics , 26 (4): 525–536, CiteSeerX   10.1.1.605.4932 , doi:10.1007/s00373-010-0934-9, MR   2669457, S2CID   121645, archived (PDF) from the original on 2016-03-04, retrieved 2016-10-04.
  103. Nöllenburg, Martin; Prutkin, Roman; Rutter, Ignaz (2016), "On self-approaching and increasing-chord drawings of 3-connected planar graphs", Journal of Computational Geometry , 7 (1): 47–69, arXiv: 1409.0315 , doi:10.20382/jocg.v7i1a3, MR   3463906, S2CID   1500695
  104. Pach, János; Sharir, Micha (2009), "5.1 Crossings—the Brick Factory Problem", Combinatorial Geometry and Its Algorithmic Applications: The Alcalá Lectures, Mathematical Surveys and Monographs, vol. 152, American Mathematical Society, pp. 126–127.
  105. Demaine, E.; O'Rourke, J. (2002–2012), "Problem 45: Smallest Universal Set of Points for Planar Graphs", The Open Problems Project, archived from the original on 2012-08-14, retrieved 2013-03-19.
  106. Conway, John H., Five $1,000 Problems (Update 2017) (PDF), Online Encyclopedia of Integer Sequences, archived (PDF) from the original on 2019-02-13, retrieved 2019-02-12
  107. mdevos; Wood, David (December 7, 2019), "Jorgensen's Conjecture", Open Problem Garden, archived from the original on 2016-11-14, retrieved 2016-11-13.
  108. Ducey, Joshua E. (2017), "On the critical group of the missing Moore graph", Discrete Mathematics , 340 (5): 1104–1109, arXiv: 1509.00327 , doi:10.1016/j.disc.2016.10.001, MR   3612450, S2CID   28297244
  109. Blokhuis, A.; Brouwer, A. E. (1988), "Geodetic graphs of diameter two", Geometriae Dedicata , 25 (1–3): 527–533, doi:10.1007/BF00191941, MR   0925851, S2CID   189890651
  110. Florek, Jan (2010), "On Barnette's conjecture", Discrete Mathematics , 310 (10–11): 1531–1535, doi:10.1016/j.disc.2010.01.018, MR   2601261 .
  111. Broersma, Hajo; Patel, Viresh; Pyatkin, Artem (2014), "On toughness and Hamiltonicity of $2K_2$-free graphs" (PDF), Journal of Graph Theory , 75 (3): 244–255, doi:10.1002/jgt.21734, MR   3153119, S2CID   1377980
  112. Jaeger, F. (1985), "A survey of the cycle double cover conjecture", Annals of Discrete Mathematics 27 – Cycles in Graphs, North-Holland Mathematics Studies, vol. 27, pp. 1–12, doi:10.1016/S0304-0208(08)72993-1, ISBN   978-0-444-87803-8 .
  113. Heckman, Christopher Carl; Krakovski, Roi (2013), "Erdös-Gyárfás conjecture for cubic planar graphs", Electronic Journal of Combinatorics, 20 (2), P7, doi: 10.37236/3252 .
  114. Chudnovsky, Maria (2014), "The Erdös–Hajnal conjecture—a survey" (PDF), Journal of Graph Theory , 75 (2): 178–190, arXiv: 1606.08827 , doi:10.1002/jgt.21730, MR   3150572, S2CID   985458, Zbl   1280.05086, archived (PDF) from the original on 2016-03-04, retrieved 2016-09-22.
  115. Akiyama, Jin; Exoo, Geoffrey; Harary, Frank (1981), "Covering and packing in graphs. IV. Linear arboricity", Networks, 11 (1): 69–72, doi:10.1002/net.3230110108, MR   0608921 .
  116. Babai, László (June 9, 1994). "Automorphism groups, isomorphism, reconstruction". Handbook of Combinatorics. Archived from the original (PostScript) on 13 June 2007.
  117. Lenz, Hanfried; Ringel, Gerhard (1991), "A brief review on Egmont Köhler's mathematical work", Discrete Mathematics , 97 (1–3): 3–16, doi:10.1016/0012-365X(91)90416-Y, MR   1140782
  118. Fomin, Fedor V.; Høie, Kjartan (2006), "Pathwidth of cubic graphs and exact algorithms", Information Processing Letters, 97 (5): 191–196, doi:10.1016/j.ipl.2005.10.012, MR   2195217
  119. Schwenk, Allen (2012). Some History on the Reconstruction Conjecture (PDF). Joint Mathematics Meetings. Archived from the original (PDF) on 2015-04-09. Retrieved 2018-11-26.
  120. Ramachandran, S. (1981), "On a new digraph reconstruction conjecture", Journal of Combinatorial Theory , Series B, 31 (2): 143–149, doi: 10.1016/S0095-8956(81)80019-6 , MR   0630977
  121. Kühn, Daniela; Mycroft, Richard; Osthus, Deryk (2011), "A proof of Sumner's universal tournament conjecture for large tournaments", Proceedings of the London Mathematical Society, Third Series, 102 (4): 731–766, arXiv: 1010.4430 , doi:10.1112/plms/pdq035, MR   2793448, S2CID   119169562, Zbl   1218.05034 .
  122. Tuza, Zsolt (1990). "A conjecture on triangles of graphs". Graphs and Combinatorics. 6 (4): 373–380. doi:10.1007/BF01787705. MR   1092587. S2CID   38821128.
  123. Brešar, Boštjan; Dorbec, Paul; Goddard, Wayne; Hartnell, Bert L.; Henning, Michael A.; Klavžar, Sandi; Rall, Douglas F. (2012), "Vizing's conjecture: a survey and recent results", Journal of Graph Theory , 69 (1): 46–76, CiteSeerX   10.1.1.159.7029 , doi:10.1002/jgt.20565, MR   2864622, S2CID   9120720 .
  124. 1 2 3 4 5 Kitaev, Sergey; Lozin, Vadim (2015). Words and Graphs. Monographs in Theoretical Computer Science. An EATCS Series. doi:10.1007/978-3-319-25859-1. ISBN   978-3-319-25857-7. S2CID   7727433 via link.springer.com.
  125. 1 2 3 4 5 Kitaev, Sergey (2017-05-16). A Comprehensive Introduction to the Theory of Word-Representable Graphs. International Conference on Developments in Language Theory. arXiv: 1705.05924v1 . doi:10.1007/978-3-319-62809-7_2.
  126. 1 2 3 4 5 Kitaev, S. V.; Pyatkin, A. V. (April 1, 2018). "Word-Representable Graphs: a Survey". Journal of Applied and Industrial Mathematics. 12 (2): 278–296. doi:10.1134/S1990478918020084. S2CID   125814097 via Springer Link.
  127. 1 2 3 4 5 Kitaev, Sergey V.; Pyatkin, Artem V. (2018). "Графы, представимые в виде слов. Обзор результатов" [Word-representable graphs: A survey]. Дискретн. анализ и исслед. опер. (in Russian). 25 (2): 19–53. doi:10.17377/daio.2018.25.588.
  128. Marc Elliot Glen (2016). "Colourability and word-representability of near-triangulations". arXiv: 1605.01688 [math.CO].
  129. Kitaev, Sergey (2014-03-06). "On graphs with representation number 3". arXiv: 1403.1616v1 [math.CO].
  130. Glen, Marc; Kitaev, Sergey; Pyatkin, Artem (2018). "On the representation number of a crown graph". Discrete Applied Mathematics. 244: 89–93. arXiv: 1609.00674 . doi:10.1016/j.dam.2018.03.013. S2CID   46925617.
  131. Spinrad, Jeremy P. (2003), "2. Implicit graph representation", Efficient Graph Representations, American Mathematical Soc., pp. 17–30, ISBN   978-0-8218-2815-1 .
  132. "Seymour's 2nd Neighborhood Conjecture". faculty.math.illinois.edu. Archived from the original on 11 January 2019. Retrieved 17 August 2022.
  133. mdevos (May 4, 2007). "5-flow conjecture". Open Problem Garden. Archived from the original on November 26, 2018.
  134. mdevos (March 31, 2010). "4-flow conjecture". Open Problem Garden. Archived from the original on November 26, 2018.
  135. Hrushovski, Ehud (1989). "Kueker's conjecture for stable theories". Journal of Symbolic Logic. 54 (1): 207–220. doi:10.2307/2275025. JSTOR   2275025. S2CID   41940041.
  136. 1 2 3 Shelah S (1990). Classification Theory. North-Holland.
  137. Shelah, Saharon (2009). Classification theory for abstract elementary classes. College Publications. ISBN   978-1-904987-71-0.
  138. Peretz, Assaf (2006). "Geometry of forking in simple theories". Journal of Symbolic Logic. 71 (1): 347–359. arXiv: math/0412356 . doi:10.2178/jsl/1140641179. S2CID   9380215.
  139. Cherlin, Gregory; Shelah, Saharon (May 2007). "Universal graphs with a forbidden subtree". Journal of Combinatorial Theory . Series B. 97 (3): 293–333. arXiv: math/0512218 . doi: 10.1016/j.jctb.2006.05.008 . S2CID   10425739.
  140. Džamonja, Mirna, "Club guessing and the universal models." On PCF, ed. M. Foreman, (Banff, Alberta, 2004).
  141. Shelah, Saharon (1999). "Borel sets with large squares". Fundamenta Mathematicae . 159 (1): 1–50. arXiv: math/9802134 . Bibcode:1998math......2134S. doi:10.4064/fm-159-1-1-50. S2CID   8846429.
  142. Baldwin, John T. (July 24, 2009). Categoricity (PDF). American Mathematical Society. ISBN   978-0-8218-4893-7. Archived (PDF) from the original on July 29, 2010. Retrieved February 20, 2014.
  143. Shelah, Saharon (2009). "Introduction to classification theory for abstract elementary classes". arXiv: 0903.3428 [math.LO].
  144. Gurevich, Yuri, "Monadic Second-Order Theories," in J. Barwise, S. Feferman, eds., Model-Theoretic Logics (New York: Springer-Verlag, 1985), 479–506.
  145. Makowsky J, "Compactness, embeddings and definability," in Model-Theoretic Logics, eds Barwise and Feferman, Springer 1985 pps. 645–715.
  146. Keisler, HJ (1967). "Ultraproducts which are not saturated". J. Symb. Log. 32 (1): 23–46. doi:10.2307/2271240. JSTOR   2271240. S2CID   250345806.
  147. Malliaris, Maryanthe; Shelah, Saharon (10 August 2012). "A Dividing Line Within Simple Unstable Theories". arXiv: 1208.2140 [math.LO].Malliaris, M.; Shelah, S. (2012). "A Dividing Line within Simple Unstable Theories". arXiv: 1208.2140 [math.LO].
  148. Conrey, Brian (2016), "Lectures on the Riemann zeta function (book review)", Bulletin of the American Mathematical Society , 53 (3): 507–512, doi: 10.1090/bull/1525
  149. Singmaster, David (1971), "Research Problems: How often does an integer occur as a binomial coefficient?", American Mathematical Monthly , 78 (4): 385–386, doi:10.2307/2316907, JSTOR   2316907, MR   1536288 .
  150. Guo, Song; Sun, Zhi-Wei (2005), "On odd covering systems with distinct moduli", Advances in Applied Mathematics, 35 (2): 182–187, arXiv: math/0412217 , doi:10.1016/j.aam.2005.01.004, MR   2152886, S2CID   835158
  151. "Are the Digits of Pi Random? Berkeley Lab Researcher May Hold Key". Archived from the original on 2016-03-27. Retrieved 2016-03-18.
  152. Robertson, John P. (1996-10-01). "Magic Squares of Squares". Mathematics Magazine. 69 (4): 289–293. doi:10.1080/0025570X.1996.11996457. ISSN   0025-570X.
  153. Aigner, Martin (2013), Markov's theorem and 100 years of the uniqueness conjecture, Cham: Springer, doi:10.1007/978-3-319-00888-2, ISBN   978-3-319-00887-5, MR   3098784
  154. Huisman, Sander G. (2016). "Newer sums of three cubes". arXiv: 1604.07746 [math.NT].
  155. Dobson, J. B. (1 April 2017), "On Lerch's formula for the Fermat quotient", p. 23, arXiv: 1103.3907v6 [math.NT]
  156. Ribenboim, P. (2006). Die Welt der Primzahlen. Springer-Lehrbuch (in German) (2nd ed.). Springer. pp. 242–243. doi:10.1007/978-3-642-18079-8. ISBN   978-3-642-18078-1.
  157. Mazur, Barry (1992), "The topology of rational points", Experimental Mathematics , 1 (1): 35–45, doi:10.1080/10586458.1992.10504244, S2CID   17372107, archived from the original on 2019-04-07, retrieved 2019-04-07
  158. Kuperberg, Greg (1994), "Quadrisecants of knots and links", Journal of Knot Theory and Its Ramifications , 3: 41–50, arXiv: math/9712205 , doi:10.1142/S021821659400006X, MR   1265452, S2CID   6103528
  159. Burklund, Robert; Hahn, Jeremy; Levy, Ishan; Schlank, Tomer (2023). "K-theoretic counterexamples to Ravenel's telescope conjecture". arXiv: 2310.17459 [math.AT].
  160. Dimitrov, Vessilin; Gao, Ziyang; Habegger, Philipp (2021). "Uniformity in Mordell–Lang for curves" (PDF). Annals of Mathematics . 194: 237–298. arXiv: 2001.10276 . doi:10.4007/annals.2021.194.1.4. S2CID   210932420.
  161. Guan, Qi'an; Zhou, Xiangyu (2015). "A solution of an extension problem with optimal estimate and applications". Annals of Mathematics. 181 (3): 1139–1208. arXiv: 1310.7169 . doi:10.4007/annals.2015.181.3.6. JSTOR   24523356. S2CID   56205818.
  162. Merel, Loïc (1996). ""Bornes pour la torsion des courbes elliptiques sur les corps de nombres" [Bounds for the torsion of elliptic curves over number fields]". Inventiones Mathematicae. 124 (1): 437–449. Bibcode:1996InMat.124..437M. doi:10.1007/s002220050059. MR   1369424. S2CID   3590991.
  163. Cohen, Stephen D.; Fried, Michael D. (1995), "Lenstra's proof of the Carlitz–Wan conjecture on exceptional polynomials: an elementary version", Finite Fields and Their Applications, 1 (3): 372–375, doi: 10.1006/ffta.1995.1027 , MR   1341953
  164. Casazza, Peter G.; Fickus, Matthew; Tremain, Janet C.; Weber, Eric (2006). "The Kadison-Singer problem in mathematics and engineering: A detailed account". In Han, Deguang; Jorgensen, Palle E. T.; Larson, David Royal (eds.). Large Deviations for Additive Functionals of Markov Chains: The 25th Great Plains Operator Theory Symposium, June 7–12, 2005, University of Central Florida, Florida. Contemporary Mathematics. Vol. 414. American Mathematical Society. pp. 299–355. doi:10.1090/conm/414/07820. ISBN   978-0-8218-3923-2 . Retrieved 24 April 2015.
  165. Mackenzie, Dana. "Kadison–Singer Problem Solved" (PDF). SIAM News. No. January/February 2014. Society for Industrial and Applied Mathematics. Archived (PDF) from the original on 23 October 2014. Retrieved 24 April 2015.
  166. 1 2 Agol, Ian (2004). "Tameness of hyperbolic 3-manifolds". arXiv: math/0405568 .
  167. Kurdyka, Krzysztof; Mostowski, Tadeusz; Parusiński, Adam (2000). "Proof of the gradient conjecture of R. Thom". Annals of Mathematics. 152 (3): 763–792. arXiv: math/9906212 . doi:10.2307/2661354. JSTOR   2661354. S2CID   119137528.
  168. Moreira, Joel; Richter, Florian K.; Robertson, Donald (2019). "A proof of a sumset conjecture of Erdős". Annals of Mathematics . 189 (2): 605–652. arXiv: 1803.00498 . doi:10.4007/annals.2019.189.2.4. S2CID   119158401.
  169. Stanley, Richard P. (1994), "A survey of Eulerian posets", in Bisztriczky, T.; McMullen, P.; Schneider, R.; Weiss, A. Ivić (eds.), Polytopes: abstract, convex and computational (Scarborough, ON, 1993), NATO Advanced Science Institutes Series C: Mathematical and Physical Sciences, vol. 440, Dordrecht: Kluwer Academic Publishers, pp. 301–333, MR   1322068 . See in particular p. 316.
  170. Kalai, Gil (2018-12-25). "Amazing: Karim Adiprasito proved the g-conjecture for spheres!". Archived from the original on 2019-02-16. Retrieved 2019-02-15.
  171. Santos, Franciscos (2012). "A counterexample to the Hirsch conjecture". Annals of Mathematics. 176 (1): 383–412. arXiv: 1006.2814 . doi:10.4007/annals.2012.176.1.7. S2CID   15325169.
  172. Ziegler, Günter M. (2012). "Who solved the Hirsch conjecture?". Documenta Mathematica (Extra Volume "Optimization Stories"): 75–85.
  173. Kauers, Manuel; Koutschan, Christoph; Zeilberger, Doron (2009-07-14). "Proof of Ira Gessel's lattice path conjecture". Proceedings of the National Academy of Sciences. 106 (28): 11502–11505. arXiv: 0806.4300 . Bibcode:2009PNAS..10611502K. doi: 10.1073/pnas.0901678106 . ISSN   0027-8424. PMC   2710637 .
  174. Chung, Fan; Greene, Curtis; Hutchinson, Joan (April 2015). "Herbert S. Wilf (1931–2012)". Notices of the AMS . 62 (4): 358. doi: 10.1090/noti1247 . ISSN   1088-9477. OCLC   34550461. The conjecture was finally given an exceptionally elegant proof by A. Marcus and G. Tardos in 2004.
  175. Savchev, Svetoslav (2005). "Kemnitz' conjecture revisited". Discrete Mathematics. 297 (1–3): 196–201. doi: 10.1016/j.disc.2005.02.018 .
  176. Green, Ben (2004). "The Cameron–Erdős conjecture". The Bulletin of the London Mathematical Society. 36 (6): 769–778. arXiv: math.NT/0304058 . doi:10.1112/S0024609304003650. MR   2083752. S2CID   119615076.
  177. "News from 2007". American Mathematical Society. AMS. 31 December 2007. Archived from the original on 17 November 2015. Retrieved 2015-11-13. The 2007 prize also recognizes Green for "his many outstanding results including his resolution of the Cameron-Erdős conjecture..."
  178. Brown, Aaron; Fisher, David; Hurtado, Sebastian (2017-10-07). "Zimmer's conjecture for actions of SL(𝑚,ℤ)". arXiv: 1710.02735 [math.DS].
  179. Xue, Jinxin (2014). "Noncollision Singularities in a Planar Four-body Problem". arXiv: 1409.0048 [math.DS].
  180. Xue, Jinxin (2020). "Non-collision singularities in a planar 4-body problem". Acta Mathematica . 224 (2): 253–388. doi:10.4310/ACTA.2020.v224.n2.a2. S2CID   226420221.
  181. Richard P Mann. "Known Historical Beggar-My-Neighbour Records" . Retrieved 2024-02-10.
  182. Bowditch, Brian H. (2006). "The angel game in the plane" (PDF). School of Mathematics, University of Southampton: warwick.ac.uk Warwick University. Archived (PDF) from the original on 2016-03-04. Retrieved 2016-03-18.
  183. Kloster, Oddvar. "A Solution to the Angel Problem" (PDF). Oslo, Norway: SINTEF ICT. Archived from the original (PDF) on 2016-01-07. Retrieved 2016-03-18.
  184. Mathe, Andras (2007). "The Angel of power 2 wins" (PDF). Combinatorics, Probability and Computing . 16 (3): 363–374. doi:10.1017/S0963548306008303. S2CID   16892955. Archived (PDF) from the original on 2016-10-13. Retrieved 2016-03-18.
  185. Gacs, Peter (June 19, 2007). "THE ANGEL WINS" (PDF). Archived from the original (PDF) on 2016-03-04. Retrieved 2016-03-18.
  186. Smith, David; Myers, Joseph Samuel; Kaplan, Craig S.; Goodman-Strauss, Chaim (2023). "An aperiodic monotile". arXiv: 2303.10798v2 [math.CO].
  187. Larson, Eric (2017). "The Maximal Rank Conjecture". arXiv: 1711.04906 [math.AG].
  188. Kerz, Moritz; Strunk, Florian; Tamme, Georg (2018), "Algebraic K-theory and descent for blow-ups", Inventiones Mathematicae , 211 (2): 523–577, arXiv: 1611.08466 , Bibcode:2018InMat.211..523K, doi:10.1007/s00222-017-0752-2, MR   3748313, S2CID   253741858
  189. Song, Antoine. "Existence of infinitely many minimal hypersurfaces in closed manifolds" (PDF). www.ams.org. Retrieved 19 June 2021. ..I will present a solution of the conjecture, which builds on min-max methods developed by F. C. Marques and A. Neves..
  190. "Antoine Song | Clay Mathematics Institute". ...Building on work of Codá Marques and Neves, in 2018 Song proved Yau's conjecture in complete generality
  191. Wolchover, Natalie (July 11, 2017), "Pentagon Tiling Proof Solves Century-Old Math Problem", Quanta Magazine , archived from the original on August 6, 2017, retrieved July 18, 2017
  192. Marques, Fernando C.; Neves, André (2013). "Min-max theory and the Willmore conjecture". Annals of Mathematics. 179 (2): 683–782. arXiv: 1202.6036 . doi:10.4007/annals.2014.179.2.6. S2CID   50742102.
  193. Guth, Larry; Katz, Nets Hawk (2015). "On the Erdos distinct distance problem in the plane". Annals of Mathematics. 181 (1): 155–190. arXiv: 1011.4105 . doi: 10.4007/annals.2015.181.1.2 .
  194. Henle, Frederick V.; Henle, James M. "Squaring the Plane" (PDF). www.maa.org Mathematics Association of America. Archived (PDF) from the original on 2016-03-24. Retrieved 2016-03-18.
  195. Brock, Jeffrey F.; Canary, Richard D.; Minsky, Yair N. (2012). "The classification of Kleinian surface groups, II: The Ending Lamination Conjecture". Annals of Mathematics. 176 (1): 1–149. arXiv: math/0412006 . doi: 10.4007/annals.2012.176.1.1 .
  196. Connelly, Robert; Demaine, Erik D.; Rote, Günter (2003), "Straightening polygonal arcs and convexifying polygonal cycles" (PDF), Discrete & Computational Geometry , 30 (2): 205–239, doi: 10.1007/s00454-003-0006-7 , MR   1931840, S2CID   40382145
  197. Faber, C.; Pandharipande, R. (2003), "Hodge integrals, partition matrices, and the conjecture", Ann. of Math., 2, 157 (1): 97–124, arXiv: math.AG/9908052 , doi:10.4007/annals.2003.157.97
  198. Shestakov, Ivan P.; Umirbaev, Ualbai U. (2004). "The tame and the wild automorphisms of polynomial rings in three variables". Journal of the American Mathematical Society. 17 (1): 197–227. doi:10.1090/S0894-0347-03-00440-5. MR   2015334.
  199. Hutchings, Michael; Morgan, Frank; Ritoré, Manuel; Ros, Antonio (2002). "Proof of the double bubble conjecture". Annals of Mathematics. Second Series. 155 (2): 459–489. arXiv: math/0406017 . doi:10.2307/3062123. hdl:10481/32449. JSTOR   3062123. MR   1906593.
  200. Hales, Thomas C. (2001). "The Honeycomb Conjecture". Discrete & Computational Geometry . 25: 1–22. arXiv: math/9906042 . doi: 10.1007/s004540010071 .
  201. Teixidor i Bigas, Montserrat; Russo, Barbara (1999). "On a conjecture of Lange". Journal of Algebraic Geometry. 8 (3): 483–496. arXiv: alg-geom/9710019 . Bibcode:1997alg.geom.10019R. ISSN   1056-3911. MR   1689352.
  202. Ullmo, E (1998). "Positivité et Discrétion des Points Algébriques des Courbes". Annals of Mathematics. 147 (1): 167–179. arXiv: alg-geom/9606017 . doi:10.2307/120987. JSTOR   120987. S2CID   119717506. Zbl   0934.14013.
  203. Zhang, S.-W. (1998). "Equidistribution of small points on abelian varieties". Annals of Mathematics. 147 (1): 159–165. doi:10.2307/120986. JSTOR   120986.
  204. Hales, Thomas; Adams, Mark; Bauer, Gertrud; Dang, Dat Tat; Harrison, John; Hoang, Le Truong; Kaliszyk, Cezary; Magron, Victor; McLaughlin, Sean; Nguyen, Tat Thang; Nguyen, Quang Truong; Nipkow, Tobias; Obua, Steven; Pleso, Joseph; Rute, Jason; Solovyev, Alexey; Ta, Thi Hoai An; Tran, Nam Trung; Trieu, Thi Diep; Urban, Josef; Ky, Vu; Zumkeller, Roland (2017). "A formal proof of the Kepler conjecture". Forum of Mathematics, Pi. 5: e2. arXiv: 1501.02155 . doi: 10.1017/fmp.2017.1 .
  205. Hales, Thomas C.; McLaughlin, Sean (2010). "The dodecahedral conjecture". Journal of the American Mathematical Society. 23 (2): 299–344. arXiv: math/9811079 . Bibcode:2010JAMS...23..299H. doi: 10.1090/S0894-0347-09-00647-X .
  206. Park, Jinyoung; Pham, Huy Tuan (2022-03-31). "A Proof of the Kahn-Kalai Conjecture". arXiv: 2203.17207 [math.CO].
  207. Dujmović, Vida; Eppstein, David; Hickingbotham, Robert; Morin, Pat; Wood, David R. (August 2021). "Stack-number is not bounded by queue-number". Combinatorica . 42 (2): 151–164. arXiv: 2011.04195 . doi:10.1007/s00493-021-4585-7. S2CID   226281691.
  208. Huang, C.; Kotzig, A.; Rosa, A. (1982). "Further results on tree labellings". Utilitas Mathematica. 21: 31–48. MR   0668845..
  209. Hartnett, Kevin (19 February 2020). "Rainbow Proof Shows Graphs Have Uniform Parts". Quanta Magazine. Retrieved 2020-02-29.
  210. Shitov, Yaroslav (1 September 2019). "Counterexamples to Hedetniemi's conjecture". Annals of Mathematics. 190 (2): 663–667. arXiv: 1905.02167 . doi:10.4007/annals.2019.190.2.6. JSTOR   10.4007/annals.2019.190.2.6. MR   3997132. S2CID   146120733. Zbl   1451.05087 . Retrieved 19 July 2021.
  211. He, Dawei; Wang, Yan; Yu, Xingxing (2019-12-11). "The Kelmans-Seymour conjecture I: Special separations". Journal of Combinatorial Theory, Series B. 144: 197–224. arXiv: 1511.05020 . doi:10.1016/j.jctb.2019.11.008. ISSN   0095-8956. S2CID   29791394.
  212. He, Dawei; Wang, Yan; Yu, Xingxing (2019-12-11). "The Kelmans-Seymour conjecture II: 2-Vertices in K4−". Journal of Combinatorial Theory, Series B. 144: 225–264. arXiv: 1602.07557 . doi:10.1016/j.jctb.2019.11.007. ISSN   0095-8956. S2CID   220369443.
  213. He, Dawei; Wang, Yan; Yu, Xingxing (2019-12-09). "The Kelmans-Seymour conjecture III: 3-vertices in K4−". Journal of Combinatorial Theory, Series B. 144: 265–308. arXiv: 1609.05747 . doi:10.1016/j.jctb.2019.11.006. ISSN   0095-8956. S2CID   119625722.
  214. He, Dawei; Wang, Yan; Yu, Xingxing (2019-12-19). "The Kelmans-Seymour conjecture IV: A proof". Journal of Combinatorial Theory, Series B. 144: 309–358. arXiv: 1612.07189 . doi:10.1016/j.jctb.2019.12.002. ISSN   0095-8956. S2CID   119175309.
  215. Zang, Wenan; Jing, Guangming; Chen, Guantao (2019-01-29). "Proof of the Goldberg–Seymour Conjecture on Edge-Colorings of Multigraphs". arXiv: 1901.10316v1 [math.CO].
  216. Abdollahi A., Zallaghi M. (2015). "Character sums for Cayley graphs". Communications in Algebra. 43 (12): 5159–5167. doi:10.1080/00927872.2014.967398. S2CID   117651702.
  217. Huh, June (2012). "Milnor numbers of projective hypersurfaces and the chromatic polynomial of graphs". Journal of the American Mathematical Society. 25 (3): 907–927. arXiv: 1008.4749 . doi: 10.1090/S0894-0347-2012-00731-0 .
  218. Chalopin, Jérémie; Gonçalves, Daniel (2009). "Every planar graph is the intersection graph of segments in the plane: extended abstract". In Mitzenmacher, Michael (ed.). Proceedings of the 41st Annual ACM Symposium on Theory of Computing, STOC 2009, Bethesda, MD, USA, May 31 - June 2, 2009. ACM. pp. 631–638. doi:10.1145/1536414.1536500.
  219. Aharoni, Ron; Berger, Eli (2009). "Menger's theorem for infinite graphs". Inventiones Mathematicae. 176 (1): 1–62. arXiv: math/0509397 . Bibcode:2009InMat.176....1A. doi: 10.1007/s00222-008-0157-3 .
  220. Seigel-Itzkovich, Judy (2008-02-08). "Russian immigrant solves math puzzle". The Jerusalem Post. Retrieved 2015-11-12.
  221. Diestel, Reinhard (2005). "Minors, Trees, and WQO" (PDF). Graph Theory (Electronic Edition 2005 ed.). Springer. pp. 326–367.
  222. Chudnovsky, Maria; Robertson, Neil; Seymour, Paul; Thomas, Robin (2002). "The strong perfect graph theorem". Annals of Mathematics. 164: 51–229. arXiv: math/0212070 . Bibcode:2002math.....12070C. doi:10.4007/annals.2006.164.51. S2CID   119151552.
  223. Klin, M. H., M. Muzychuk and R. Poschel: The isomorphism problem for circulant graphs via Schur ring theory, Codes and Association Schemes, American Math. Society, 2001.
  224. Chen, Zhibo (1996). "Harary's conjectures on integral sum graphs". Discrete Mathematics . 160 (1–3): 241–244. doi: 10.1016/0012-365X(95)00163-Q .
  225. Friedman, Joel (January 2015). "Sheaves on Graphs, Their Homological Invariants, and a Proof of the Hanna Neumann Conjecture: with an Appendix by Warren Dicks" (PDF). Memoirs of the American Mathematical Society. 233 (1100): 0. doi:10.1090/memo/1100. ISSN   0065-9266. S2CID   117941803.
  226. Mineyev, Igor (2012). "Submultiplicativity and the Hanna Neumann conjecture". Annals of Mathematics. Second Series. 175 (1): 393–414. doi:10.4007/annals.2012.175.1.11. MR   2874647.
  227. Namazi, Hossein; Souto, Juan (2012). "Non-realizability and ending laminations: Proof of the density conjecture". Acta Mathematica. 209 (2): 323–395. doi: 10.1007/s11511-012-0088-0 .
  228. Pila, Jonathan; Shankar, Ananth; Tsimerman, Jacob; Esnault, Hélène; Groechenig, Michael (2021-09-17). "Canonical Heights on Shimura Varieties and the André-Oort Conjecture". arXiv: 2109.08788 [math.NT].
  229. Bourgain, Jean; Ciprian, Demeter; Larry, Guth (2015). "Proof of the main conjecture in Vinogradov's Mean Value Theorem for degrees higher than three". Annals of Mathematics. 184 (2): 633–682. arXiv: 1512.01565 . Bibcode:2015arXiv151201565B. doi:10.4007/annals.2016.184.2.7. hdl:1721.1/115568. S2CID   43929329.
  230. Helfgott, Harald A. (2013). "Major arcs for Goldbach's theorem". arXiv: 1305.2897 [math.NT].
  231. Helfgott, Harald A. (2012). "Minor arcs for Goldbach's problem". arXiv: 1205.5252 [math.NT].
  232. Helfgott, Harald A. (2013). "The ternary Goldbach conjecture is true". arXiv: 1312.7748 [math.NT].
  233. Zhang, Yitang (2014-05-01). "Bounded gaps between primes". Annals of Mathematics. 179 (3): 1121–1174. doi:10.4007/annals.2014.179.3.7. ISSN   0003-486X.
  234. "Bounded gaps between primes - Polymath Wiki". asone.ai. Archived from the original on 2020-12-08. Retrieved 2021-08-27.
  235. Maynard, James (2015-01-01). "Small gaps between primes". Annals of Mathematics: 383–413. arXiv: 1311.4600 . doi:10.4007/annals.2015.181.1.7. ISSN   0003-486X. S2CID   55175056.
  236. Cilleruelo, Javier (2010). "Generalized Sidon sets". Advances in Mathematics . 225 (5): 2786–2807. doi: 10.1016/j.aim.2010.05.010 . hdl: 10261/31032 . S2CID   7385280.
  237. Khare, Chandrashekhar; Wintenberger, Jean-Pierre (2009), "Serre's modularity conjecture (I)", Inventiones Mathematicae, 178 (3): 485–504, Bibcode:2009InMat.178..485K, CiteSeerX   10.1.1.518.4611 , doi:10.1007/s00222-009-0205-7, S2CID   14846347
  238. Khare, Chandrashekhar; Wintenberger, Jean-Pierre (2009), "Serre's modularity conjecture (II)", Inventiones Mathematicae, 178 (3): 505–586, Bibcode:2009InMat.178..505K, CiteSeerX   10.1.1.228.8022 , doi:10.1007/s00222-009-0206-6, S2CID   189820189
  239. "2011 Cole Prize in Number Theory" (PDF). Notices of the AMS . 58 (4): 610–611. ISSN   1088-9477. OCLC   34550461. Archived (PDF) from the original on 2015-11-06. Retrieved 2015-11-12.
  240. "Bombieri and Tao Receive King Faisal Prize" (PDF). Notices of the AMS . 57 (5): 642–643. May 2010. ISSN   1088-9477. OCLC   34550461. Archived (PDF) from the original on 2016-03-04. Retrieved 2016-03-18. Working with Ben Green, he proved there are arbitrarily long arithmetic progressions of prime numbers—a result now known as the Green–Tao theorem.
  241. Metsänkylä, Tauno (5 September 2003). "Catalan's conjecture: another old diophantine problem solved" (PDF). Bulletin of the American Mathematical Society . 41 (1): 43–57. doi:10.1090/s0273-0979-03-00993-5. ISSN   0273-0979. Archived (PDF) from the original on 4 March 2016. Retrieved 13 November 2015. The conjecture, which dates back to 1844, was recently proven by the Swiss mathematician Preda Mihăilescu.
  242. Croot, Ernest S. III (2000). Unit Fractions. Ph.D. thesis. University of Georgia, Athens. Croot, Ernest S. III (2003). "On a coloring conjecture about unit fractions". Annals of Mathematics . 157 (2): 545–556. arXiv: math.NT/0311421 . Bibcode:2003math.....11421C. doi:10.4007/annals.2003.157.545. S2CID   13514070.
  243. Lafforgue, Laurent (1998), "Chtoucas de Drinfeld et applications" [Drinfelʹd shtukas and applications], Documenta Mathematica (in French), II: 563–570, ISSN   1431-0635, MR   1648105, archived from the original on 2018-04-27, retrieved 2016-03-18
  244. Wiles, Andrew (1995). "Modular elliptic curves and Fermat's Last Theorem" (PDF). Annals of Mathematics. 141 (3): 443–551. CiteSeerX   10.1.1.169.9076 . doi:10.2307/2118559. JSTOR   2118559. OCLC   37032255. Archived (PDF) from the original on 2011-05-10. Retrieved 2016-03-06.
  245. Taylor R, Wiles A (1995). "Ring theoretic properties of certain Hecke algebras". Annals of Mathematics. 141 (3): 553–572. CiteSeerX   10.1.1.128.531 . doi:10.2307/2118560. JSTOR   2118560. OCLC   37032255. Archived from the original on 16 September 2000.
  246. Lee, Choongbum (2017). "Ramsey numbers of degenerate graphs". Annals of Mathematics. 185 (3): 791–829. arXiv: 1505.04773 . doi:10.4007/annals.2017.185.3.2. S2CID   7974973.
  247. Lamb, Evelyn (26 May 2016). "Two-hundred-terabyte maths proof is largest ever". Nature. 534 (7605): 17–18. Bibcode:2016Natur.534...17L. doi: 10.1038/nature.2016.19990 . PMID   27251254.
  248. Heule, Marijn J. H.; Kullmann, Oliver; Marek, Victor W. (2016). "Solving and Verifying the Boolean Pythagorean Triples Problem via Cube-and-Conquer". In Creignou, N.; Le Berre, D. (eds.). Theory and Applications of Satisfiability Testing – SAT 2016. Lecture Notes in Computer Science. Vol. 9710. Springer, [Cham]. pp. 228–245. arXiv: 1605.00723 . doi:10.1007/978-3-319-40970-2_15. ISBN   978-3-319-40969-6. MR   3534782. S2CID   7912943.
  249. Linkletter, David (27 December 2019). "The 10 Biggest Math Breakthroughs of 2019". Popular Mechanics . Retrieved 20 June 2021.
  250. Piccirillo, Lisa (2020). "The Conway knot is not slice". Annals of Mathematics . 191 (2): 581–591. doi:10.4007/annals.2020.191.2.5. S2CID   52398890.
  251. Klarreich, Erica (2020-05-19). "Graduate Student Solves Decades-Old Conway Knot Problem". Quanta Magazine . Retrieved 2022-08-17.
  252. Agol, Ian (2013). "The virtual Haken conjecture (with an appendix by Ian Agol, Daniel Groves, and Jason Manning)" (PDF). Documenta Mathematica. 18: 1045–1087. arXiv: 1204.2810v1 . doi:10.4171/dm/421. S2CID   255586740.
  253. Brendle, Simon (2013). "Embedded minimal tori in and the Lawson conjecture". Acta Mathematica. 211 (2): 177–190. arXiv: 1203.6597 . doi: 10.1007/s11511-013-0101-2 .
  254. Kahn, Jeremy; Markovic, Vladimir (2015). "The good pants homology and the Ehrenpreis conjecture". Annals of Mathematics. 182 (1): 1–72. arXiv: 1101.1330 . doi: 10.4007/annals.2015.182.1.1 .
  255. Austin, Tim (December 2013). "Rational group ring elements with kernels having irrational dimension". Proceedings of the London Mathematical Society. 107 (6): 1424–1448. arXiv: 0909.2360 . Bibcode:2009arXiv0909.2360A. doi:10.1112/plms/pdt029. S2CID   115160094.
  256. Lurie, Jacob (2009). "On the classification of topological field theories". Current Developments in Mathematics. 2008: 129–280. arXiv: 0905.0465 . Bibcode:2009arXiv0905.0465L. doi:10.4310/cdm.2008.v2008.n1.a3. S2CID   115162503.
  257. 1 2 "Prize for Resolution of the Poincaré Conjecture Awarded to Dr. Grigoriy Perelman" (PDF) (Press release). Clay Mathematics Institute. March 18, 2010. Archived from the original on March 22, 2010. Retrieved November 13, 2015. The Clay Mathematics Institute hereby awards the Millennium Prize for resolution of the Poincaré conjecture to Grigoriy Perelman.
  258. Morgan, John; Tian, Gang (2008). "Completion of the Proof of the Geometrization Conjecture". arXiv: 0809.4040 [math.DG].
  259. Rudin, M.E. (2001). "Nikiel's Conjecture". Topology and Its Applications. 116 (3): 305–331. doi: 10.1016/S0166-8641(01)00218-8 .
  260. Norio Iwase (1 November 1998). "Ganea's Conjecture on Lusternik-Schnirelmann Category". ResearchGate.
  261. Tao, Terence (2015). "The Erdős discrepancy problem". arXiv: 1509.05363v5 [math.CO].
  262. Duncan, John F. R.; Griffin, Michael J.; Ono, Ken (1 December 2015). "Proof of the umbral moonshine conjecture". Research in the Mathematical Sciences. 2 (1): 26. arXiv: 1503.01472 . Bibcode:2015arXiv150301472D. doi: 10.1186/s40687-015-0044-7 . S2CID   43589605.
  263. Cheeger, Jeff; Naber, Aaron (2015). "Regularity of Einstein Manifolds and the Codimension 4 Conjecture". Annals of Mathematics. 182 (3): 1093–1165. arXiv: 1406.6534 . doi: 10.4007/annals.2015.182.3.5 .
  264. Wolchover, Natalie (March 28, 2017). "A Long-Sought Proof, Found and Almost Lost". Quanta Magazine . Archived from the original on April 24, 2017. Retrieved May 2, 2017.
  265. Newman, Alantha; Nikolov, Aleksandar (2011). "A counterexample to Beck's conjecture on the discrepancy of three permutations". arXiv: 1104.2922 [cs.DM].
  266. Voevodsky, Vladimir (1 July 2011). "On motivic cohomology with Z/l-coefficients" (PDF). annals.math.princeton.edu. Princeton, NJ: Princeton University. pp. 401–438. Archived (PDF) from the original on 2016-03-27. Retrieved 2016-03-18.
  267. Geisser, Thomas; Levine, Marc (2001). "The Bloch-Kato conjecture and a theorem of Suslin-Voevodsky". Journal für die Reine und Angewandte Mathematik. 2001 (530): 55–103. doi:10.1515/crll.2001.006. MR   1807268.
  268. Kahn, Bruno. "Algebraic K-Theory, Algebraic Cycles and Arithmetic Geometry" (PDF). webusers.imj-prg.fr. Archived (PDF) from the original on 2016-03-27. Retrieved 2016-03-18.
  269. "motivic cohomology – Milnor–Bloch–Kato conjecture implies the Beilinson-Lichtenbaum conjecture – MathOverflow" . Retrieved 2016-03-18.
  270. Mattman, Thomas W.; Solis, Pablo (2009). "A proof of the Kauffman-Harary Conjecture". Algebraic & Geometric Topology. 9 (4): 2027–2039. arXiv: 0906.1612 . Bibcode:2009arXiv0906.1612M. doi:10.2140/agt.2009.9.2027. S2CID   8447495.
  271. Kahn, Jeremy; Markovic, Vladimir (2012). "Immersing almost geodesic surfaces in a closed hyperbolic three manifold". Annals of Mathematics. 175 (3): 1127–1190. arXiv: 0910.5501 . doi: 10.4007/annals.2012.175.3.4 .
  272. Lu, Zhiqin (September 2011) [2007]. "Normal Scalar Curvature Conjecture and its applications". Journal of Functional Analysis. 261 (5): 1284–1308. arXiv: 0711.3510 . doi: 10.1016/j.jfa.2011.05.002 .
  273. Dencker, Nils (2006), "The resolution of the Nirenberg–Treves conjecture" (PDF), Annals of Mathematics , 163 (2): 405–444, doi:10.4007/annals.2006.163.405, S2CID   16630732, archived (PDF) from the original on 2018-07-20, retrieved 2019-04-07
  274. "Research Awards". Clay Mathematics Institute . Archived from the original on 2019-04-07. Retrieved 2019-04-07.
  275. Lewis, A. S.; Parrilo, P. A.; Ramana, M. V. (2005). "The Lax conjecture is true". Proceedings of the American Mathematical Society. 133 (9): 2495–2499. doi:10.1090/S0002-9939-05-07752-X. MR   2146191. S2CID   17436983.
  276. "Fields Medal – Ngô Bảo Châu". International Congress of Mathematicians 2010. ICM. 19 August 2010. Archived from the original on 24 September 2015. Retrieved 2015-11-12. Ngô Bảo Châu is being awarded the 2010 Fields Medal for his proof of the Fundamental Lemma in the theory of automorphic forms through the introduction of new algebro-geometric methods.
  277. Voevodsky, Vladimir (2003). "Reduced power operations in motivic cohomology". Publications Mathématiques de l'IHÉS. 98: 1–57. arXiv: math/0107109 . CiteSeerX   10.1.1.170.4427 . doi:10.1007/s10240-003-0009-z. S2CID   8172797. Archived from the original on 2017-07-28. Retrieved 2016-03-18.
  278. Baruch, Ehud Moshe (2003). "A proof of Kirillov's conjecture". Annals of Mathematics. Second Series. 158 (1): 207–252. doi:10.4007/annals.2003.158.207. MR   1999922.
  279. Haas, Bertrand (2002). "A Simple Counterexample to Kouchnirenko's Conjecture" (PDF). Beiträge zur Algebra und Geometrie. 43 (1): 1–8. Archived (PDF) from the original on 2016-10-07. Retrieved 2016-03-18.
  280. Haiman, Mark (2001). "Hilbert schemes, polygraphs and the Macdonald positivity conjecture". Journal of the American Mathematical Society. 14 (4): 941–1006. doi:10.1090/S0894-0347-01-00373-3. MR   1839919. S2CID   9253880.
  281. Auscher, Pascal; Hofmann, Steve; Lacey, Michael; McIntosh, Alan; Tchamitchian, Ph. (2002). "The solution of the Kato square root problem for second order elliptic operators on ". Annals of Mathematics. Second Series. 156 (2): 633–654. doi:10.2307/3597201. JSTOR   3597201. MR   1933726.
  282. Barbieri-Viale, Luca; Rosenschon, Andreas; Saito, Morihiko (2003). "Deligne's Conjecture on 1-Motives". Annals of Mathematics. 158 (2): 593–633. arXiv: math/0102150 . doi: 10.4007/annals.2003.158.593 .
  283. Breuil, Christophe; Conrad, Brian; Diamond, Fred; Taylor, Richard (2001), "On the modularity of elliptic curves over Q: wild 3-adic exercises", Journal of the American Mathematical Society , 14 (4): 843–939, doi: 10.1090/S0894-0347-01-00370-8 , ISSN   0894-0347, MR   1839918
  284. Luca, Florian (2000). "On a conjecture of Erdős and Stewart" (PDF). Mathematics of Computation. 70 (234): 893–897. Bibcode:2001MaCom..70..893L. doi:10.1090/s0025-5718-00-01178-9. Archived (PDF) from the original on 2016-04-02. Retrieved 2016-03-18.
  285. Atiyah, Michael (2000). "The geometry of classical particles". In Yau, Shing-Tung (ed.). Papers dedicated to Atiyah, Bott, Hirzebruch, and Singer. Surveys in Differential Geometry. Vol. 7. Somerville, Massachusetts: International Press. pp. 1–15. doi:10.4310/SDG.2002.v7.n1.a1. MR   1919420.

Further reading

Books discussing problems solved since 1995

Books discussing unsolved problems