Prime ideal

Last updated
A Hasse diagram of a portion of the lattice of ideals of the integers
Z
.
{\displaystyle \mathbb {Z} .}
The purple nodes indicate prime ideals. The purple and green nodes are semiprime ideals, and the purple and blue nodes are primary ideals. A portion of the lattice of ideals of Z illustrating prime, semiprime and primary ideals SVG.svg
A Hasse diagram of a portion of the lattice of ideals of the integers The purple nodes indicate prime ideals. The purple and green nodes are semiprime ideals, and the purple and blue nodes are primary ideals.

In algebra, a prime ideal is a subset of a ring that shares many important properties of a prime number in the ring of integers. [1] [2] The prime ideals for the integers are the sets that contain all the multiples of a given prime number, together with the zero ideal.

Contents

Primitive ideals are prime, and prime ideals are both primary and semiprime.

Prime ideals for commutative rings

Definition

An ideal P of a commutative ring R is prime if it has the following two properties:

This generalizes the following property of prime numbers, known as Euclid's lemma: if p is a prime number and if p divides a product ab of two integers, then p divides a or p divides b. We can therefore say

A positive integer n is a prime number if and only if is a prime ideal in

Examples

Non-examples

Although the first two rings are integral domains (in fact the first is a UFD) the last is not an integral domain since it is isomorphic to
showing that the ideal is not prime. (See the first property listed below.)
but neither nor are elements of the ideal.

Properties

Uses

One use of prime ideals occurs in algebraic geometry, where varieties are defined as the zero sets of ideals in polynomial rings. It turns out that the irreducible varieties correspond to prime ideals. In the modern abstract approach, one starts with an arbitrary commutative ring and turns the set of its prime ideals, also called its spectrum, into a topological space and can thus define generalizations of varieties called schemes, which find applications not only in geometry, but also in number theory.

The introduction of prime ideals in algebraic number theory was a major step forward: it was realized that the important property of unique factorisation expressed in the fundamental theorem of arithmetic does not hold in every ring of algebraic integers, but a substitute was found when Richard Dedekind replaced elements by ideals and prime elements by prime ideals; see Dedekind domain.

Prime ideals for noncommutative rings

The notion of a prime ideal can be generalized to noncommutative rings by using the commutative definition "ideal-wise". Wolfgang Krull advanced this idea in 1928. [5] The following content can be found in texts such as Goodearl's [6] and Lam's. [7] If R is a (possibly noncommutative) ring and P is a proper ideal of R, we say that P is prime if for any two ideals A and B of R:

It can be shown that this definition is equivalent to the commutative one in commutative rings. It is readily verified that if an ideal of a noncommutative ring R satisfies the commutative definition of prime, then it also satisfies the noncommutative version. An ideal P satisfying the commutative definition of prime is sometimes called a completely prime ideal to distinguish it from other merely prime ideals in the ring. Completely prime ideals are prime ideals, but the converse is not true. For example, the zero ideal in the ring of n×n matrices over a field is a prime ideal, but it is not completely prime.

This is close to the historical point of view of ideals as ideal numbers, as for the ring "A is contained in P" is another way of saying "P divides A", and the unit ideal R represents unity.

Equivalent formulations of the ideal PR being prime include the following properties:

Prime ideals in commutative rings are characterized by having multiplicatively closed complements in R, and with slight modification, a similar characterization can be formulated for prime ideals in noncommutative rings. A nonempty subset SR is called an m-system if for any a and b in S, there exists r in R such that arb is in S. [8] The following item can then be added to the list of equivalent conditions above:

Examples

Important facts

Connection to maximality

Prime ideals can frequently be produced as maximal elements of certain collections of ideals. For example:

See also

Related Research Articles

In mathematics, an integral domain is a nonzero commutative ring in which the product of any two nonzero elements is nonzero. Integral domains are generalizations of the ring of integers and provide a natural setting for studying divisibility. In an integral domain, every nonzero element a has the cancellation property, that is, if a ≠ 0, an equality ab = ac implies b = c.

In mathematics, and more specifically in ring theory, an ideal of a ring is a special subset of its elements. Ideals generalize certain subsets of the integers, such as the even numbers or the multiples of 3. Addition and subtraction of even numbers preserves evenness, and multiplying an even number by any integer results in an even number; these closure and absorption properties are the defining properties of an ideal. An ideal can be used to construct a quotient ring in a way similar to how, in group theory, a normal subgroup can be used to construct a quotient group.

In commutative algebra, the prime spectrum of a commutative ring R is the set of all prime ideals of R, and is usually denoted by ; in algebraic geometry it is simultaneously a topological space equipped with the sheaf of rings .

In mathematics, more specifically in ring theory, a maximal ideal is an ideal that is maximal amongst all proper ideals. In other words, I is a maximal ideal of a ring R if there are no other ideals contained between I and R.

In mathematics, rings are algebraic structures that generalize fields: multiplication need not be commutative and multiplicative inverses need not exist. Informally, a ring is a set equipped with two binary operations satisfying properties analogous to those of addition and multiplication of integers. Ring elements may be numbers such as integers or complex numbers, but they may also be non-numerical objects such as polynomials, square matrices, functions, and power series.

In commutative algebra, the Krull dimension of a commutative ring R, named after Wolfgang Krull, is the supremum of the lengths of all chains of prime ideals. The Krull dimension need not be finite even for a Noetherian ring. More generally the Krull dimension can be defined for modules over possibly non-commutative rings as the deviation of the poset of submodules.

In mathematics, a Noetherian ring is a ring that satisfies the ascending chain condition on left and right ideals; if the chain condition is satisfied only for left ideals or for right ideals, then the ring is said left-Noetherian or right-Noetherian respectively. That is, every increasing sequence of left ideals has a largest element; that is, there exists an n such that:

In mathematics, a unique factorization domain (UFD) is a ring in which a statement analogous to the fundamental theorem of arithmetic holds. Specifically, a UFD is an integral domain in which every non-zero non-unit element can be written as a product of irreducible elements, uniquely up to order and units.

In mathematics, a commutative ring is a ring in which the multiplication operation is commutative. The study of commutative rings is called commutative algebra. Complementarily, noncommutative algebra is the study of ring properties that are not specific to commutative rings. This distinction results from the high number of fundamental properties of commutative rings that do not extend to noncommutative rings.

In mathematics, more specifically in ring theory, local rings are certain rings that are comparatively simple, and serve to describe what is called "local behaviour", in the sense of functions defined on algebraic varieties or manifolds, or of algebraic number fields examined at a particular place, or prime. Local algebra is the branch of commutative algebra that studies commutative local rings and their modules.

In algebra, ring theory is the study of rings—algebraic structures in which addition and multiplication are defined and have similar properties to those operations defined for the integers. Ring theory studies the structure of rings, their representations, or, in different language, modules, special classes of rings, as well as an array of properties that proved to be of interest both within the theory itself and for its applications, such as homological properties and polynomial identities.

In mathematics, a scheme is a mathematical structure that enlarges the notion of algebraic variety in several ways, such as taking account of multiplicities and allowing "varieties" defined over any commutative ring.

In mathematics, specifically abstract algebra, an Artinian ring is a ring that satisfies the descending chain condition on (one-sided) ideals; that is, there is no infinite descending sequence of ideals. Artinian rings are named after Emil Artin, who first discovered that the descending chain condition for ideals simultaneously generalizes finite rings and rings that are finite-dimensional vector spaces over fields. The definition of Artinian rings may be restated by interchanging the descending chain condition with an equivalent notion: the minimum condition.

In commutative algebra, a regular sequence is a sequence of elements of a commutative ring which are as independent as possible, in a precise sense. This is the algebraic analogue of the geometric notion of a complete intersection.

In abstract algebra, a valuation ring is an integral domain D such that for every non-zero element x of its field of fractions F, at least one of x or x−1 belongs to D.

In mathematics, the Lasker–Noether theorem states that every Noetherian ring is a Lasker ring, which means that every ideal can be decomposed as an intersection, called primary decomposition, of finitely many primary ideals. The theorem was first proven by Emanuel Lasker for the special case of polynomial rings and convergent power series rings, and was proven in its full generality by Emmy Noether.

In mathematics, the Noether normalization lemma is a result of commutative algebra, introduced by Emmy Noether in 1926. It states that for any field k, and any finitely generated commutative k-algebraA, there exist algebraically independent elements y1, y2, ..., yd in A such that A is a finitely generated module over the polynomial ring S = k [y1, y2, ..., yd]. The integer d is equal to the Krull dimension of the ring A; and if A is an integral domain, d is also the transcendence degree of the field of fractions of A over k.

In abstract algebra, a completion is any of several related functors on rings and modules that result in complete topological rings and modules. Completion is similar to localization, and together they are among the most basic tools in analysing commutative rings. Complete commutative rings have a simpler structure than general ones, and Hensel's lemma applies to them. In algebraic geometry, a completion of a ring of functions R on a space X concentrates on a formal neighborhood of a point of X: heuristically, this is a neighborhood so small that all Taylor series centered at the point are convergent. An algebraic completion is constructed in a manner analogous to completion of a metric space with Cauchy sequences, and agrees with it in the case when R has a metric given by a non-Archimedean absolute value.

In commutative algebra, an element b of a commutative ring B is said to be integral over a subring A of B if b is a root of some monic polynomial over A.

In commutative algebra, an integrally closed domainA is an integral domain whose integral closure in its field of fractions is A itself. Spelled out, this means that if x is an element of the field of fractions of A that is a root of a monic polynomial with coefficients in A, then x is itself an element of A. Many well-studied domains are integrally closed, as shown by the following chain of class inclusions:

References

  1. Dummit, David S.; Foote, Richard M. (2004). Abstract Algebra (3rd ed.). John Wiley & Sons. ISBN   0-471-43334-9.
  2. Lang, Serge (2002). Algebra. Graduate Texts in Mathematics. Springer. ISBN   0-387-95385-X.
  3. Reid, Miles (1996). Undergraduate Commutative Algebra. Cambridge University Press. ISBN   0-521-45889-7.
  4. 1 2 Lam First Course in Noncommutative Rings, p. 156
  5. Krull, Wolfgang, Primidealketten in allgemeinen Ringbereichen, Sitzungsberichte Heidelberg. Akad. Wissenschaft (1928), 7. Abhandl.,3-14.
  6. Goodearl, An Introduction to Noncommutative Noetherian Rings
  7. Lam, First Course in Noncommutative Rings
  8. Obviously, multiplicatively closed sets are m-systems.
  9. Jacobson Basic Algebra II, p. 390
  10. Kaplansky Commutative rings, p. 2
  11. Kaplansky Commutative rings, p. 10, Ex 10.
  12. Kaplansky Commutative rings, p. 10, Ex 11.

Further reading