Unique factorization domain

Last updated

In mathematics, a unique factorization domain (UFD) (also sometimes called a factorial ring following the terminology of Bourbaki) is a ring in which a statement analogous to the fundamental theorem of arithmetic holds. Specifically, a UFD is an integral domain (a nontrivial commutative ring in which the product of any two non-zero elements is non-zero) in which every non-zero non-unit element can be written as a product of irreducible elements, uniquely up to order and units.

Contents

Important examples of UFDs are the integers and polynomial rings in one or more variables with coefficients coming from the integers or from a field.

Unique factorization domains appear in the following chain of class inclusions:

rngs rings commutative rings integral domains integrally closed domains GCD domains unique factorization domains principal ideal domains Euclidean domains fields algebraically closed fields

Definition

Formally, a unique factorization domain is defined to be an integral domain R in which every non-zero element x of R can be written as a product of a unit u and zero or more irreducible elements pi of R:

x = up1p2 ⋅⋅⋅ pn with n 0

and this representation is unique in the following sense: If q1, ..., qm are irreducible elements of R and w is a unit such that

x = wq1q2 ⋅⋅⋅ qm with m 0,

then m = n, and there exists a bijective map φ : {1, ..., n} → {1, ..., m} such that pi is associated to qφ(i) for i {1, ..., n}.

Examples

Most rings familiar from elementary mathematics are UFDs:

Non-examples

Properties

Some concepts defined for integers can be generalized to UFDs:

Equivalent conditions for a ring to be a UFD

A Noetherian integral domain is a UFD if and only if every height 1 prime ideal is principal (a proof is given at the end). Also, a Dedekind domain is a UFD if and only if its ideal class group is trivial. In this case, it is in fact a principal ideal domain.

In general, for an integral domain A, the following conditions are equivalent:

  1. A is a UFD.
  2. Every nonzero prime ideal of A contains a prime element. [5]
  3. A satisfies ascending chain condition on principal ideals (ACCP), and the localization S1A is a UFD, where S is a multiplicatively closed subset of A generated by prime elements. (Nagata criterion)
  4. A satisfies ACCP and every irreducible is prime.
  5. A is atomic and every irreducible is prime.
  6. A is a GCD domain satisfying ACCP.
  7. A is a Schreier domain, [6] and atomic.
  8. A is a pre-Schreier domain and atomic.
  9. A has a divisor theory in which every divisor is principal.
  10. A is a Krull domain in which every divisorial ideal is principal (in fact, this is the definition of UFD in Bourbaki.)
  11. A is a Krull domain and every prime ideal of height 1 is principal. [7]

In practice, (2) and (3) are the most useful conditions to check. For example, it follows immediately from (2) that a PID is a UFD, since every prime ideal is generated by a prime element in a PID.

For another example, consider a Noetherian integral domain in which every height one prime ideal is principal. Since every prime ideal has finite height, it contains a height one prime ideal (induction on height) that is principal. By (2), the ring is a UFD.

See also

Citations

  1. Bourbaki (1972), 7.3, no 6, Proposition 4
  2. Samuel (1964), p. 35
  3. Samuel (1964), p. 31
  4. Artin (2011), p. 360
  5. Kaplansky
  6. A Schreier domain is an integrally closed integral domain where, whenever x divides yz, x can be written as x = x1x2 so that x1 divides y and x2 divides z. In particular, a GCD domain is a Schreier domain
  7. Bourbaki (1972), 7.3, no 2, Theorem 1.

Related Research Articles

In mathematics, more specifically in ring theory, a Euclidean domain is an integral domain that can be endowed with a Euclidean function which allows a suitable generalization of the Euclidean division of integers. This generalized Euclidean algorithm can be put to many of the same uses as Euclid's original algorithm in the ring of integers: in any Euclidean domain, one can apply the Euclidean algorithm to compute the greatest common divisor of any two elements. In particular, the greatest common divisor of any two elements exists and can be written as a linear combination of them. Also every ideal in a Euclidean domain is principal, which implies a suitable generalization of the fundamental theorem of arithmetic: every Euclidean domain is a unique factorization domain.

In mathematics, an integral domain is a nonzero commutative ring in which the product of any two nonzero elements is nonzero. Integral domains are generalizations of the ring of integers and provide a natural setting for studying divisibility. In an integral domain, every nonzero element a has the cancellation property, that is, if a ≠ 0, an equality ab = ac implies b = c.

<span class="mw-page-title-main">Prime ideal</span> Ideal in a ring which has properties similar to prime elements

In algebra, a prime ideal is a subset of a ring that shares many important properties of a prime number in the ring of integers. The prime ideals for the integers are the sets that contain all the multiples of a given prime number, together with the zero ideal.

In mathematics, a principal ideal domain, or PID, is an integral domain in which every ideal is principal, i.e., can be generated by a single element. More generally, a principal ideal ring is a nonzero commutative ring whose ideals are principal, although some authors refer to PIDs as principal rings. The distinction is that a principal ideal ring may have zero divisors whereas a principal ideal domain cannot.

In mathematics, specifically in abstract algebra, a prime element of a commutative ring is an object satisfying certain properties similar to the prime numbers in the integers and to irreducible polynomials. Care should be taken to distinguish prime elements from irreducible elements, a concept that is the same in UFDs but not the same in general.

In algebra, an irreducible element of an integral domain is a non-zero element that is not invertible, and is not the product of two non-invertible elements.

In mathematics, a commutative ring is a ring in which the multiplication operation is commutative. The study of commutative rings is called commutative algebra. Complementarily, noncommutative algebra is the study of ring properties that are not specific to commutative rings. This distinction results from the high number of fundamental properties of commutative rings that do not extend to noncommutative rings.

<span class="mw-page-title-main">Factorization</span> (Mathematical) decomposition into a product

In mathematics, factorization (or factorisation, see English spelling differences) or factoring consists of writing a number or another mathematical object as a product of several factors, usually smaller or simpler objects of the same kind. For example, 3 × 5 is an integer factorization of 15, and (x – 2)(x + 2) is a polynomial factorization of x2 – 4.

In abstract algebra, a Dedekind domain or Dedekind ring, named after Richard Dedekind, is an integral domain in which every nonzero proper ideal factors into a product of prime ideals. It can be shown that such a factorization is then necessarily unique up to the order of the factors. There are at least three other characterizations of Dedekind domains that are sometimes taken as the definition: see below.

In number theory, the ideal class group of an algebraic number field K is the quotient group JK /PK where JK is the group of fractional ideals of the ring of integers of K, and PK is its subgroup of principal ideals. The class group is a measure of the extent to which unique factorization fails in the ring of integers of K. The order of the group, which is finite, is called the class number of K.

<span class="mw-page-title-main">Algebraic number theory</span> Branch of number theory

Algebraic number theory is a branch of number theory that uses the techniques of abstract algebra to study the integers, rational numbers, and their generalizations. Number-theoretic questions are expressed in terms of properties of algebraic objects such as algebraic number fields and their rings of integers, finite fields, and function fields. These properties, such as whether a ring admits unique factorization, the behavior of ideals, and the Galois groups of fields, can resolve questions of primary importance in number theory, like the existence of solutions to Diophantine equations.

In mathematics, an irreducible polynomial is, roughly speaking, a polynomial that cannot be factored into the product of two non-constant polynomials. The property of irreducibility depends on the nature of the coefficients that are accepted for the possible factors, that is, the ring to which the coefficients of the polynomial and its possible factors are supposed to belong. For example, the polynomial x2 − 2 is a polynomial with integer coefficients, but, as every integer is also a real number, it is also a polynomial with real coefficients. It is irreducible if it is considered as a polynomial with integer coefficients, but it factors as if it is considered as a polynomial with real coefficients. One says that the polynomial x2 − 2 is irreducible over the integers but not over the reals.

In mathematics, in particular commutative algebra, the concept of fractional ideal is introduced in the context of integral domains and is particularly fruitful in the study of Dedekind domains. In some sense, fractional ideals of an integral domain are like ideals where denominators are allowed. In contexts where fractional ideals and ordinary ring ideals are both under discussion, the latter are sometimes termed integral ideals for clarity.

In algebra, Gauss's lemma, named after Carl Friedrich Gauss, is a theorem about polynomials over the integers, or, more generally, over a unique factorization domain. Gauss's lemma underlies all the theory of factorization and greatest common divisors of such polynomials.

In mathematics, a GCD domain is an integral domain R with the property that any two elements have a greatest common divisor (GCD); i.e., there is a unique minimal principal ideal containing the ideal generated by two given elements. Equivalently, any two elements of R have a least common multiple (LCM).

In mathematics, a Bézout domain is a form of a Prüfer domain. It is an integral domain in which the sum of two principal ideals is again a principal ideal. This means that for every pair of elements a Bézout identity holds, and that every finitely generated ideal is principal. Any principal ideal domain (PID) is a Bézout domain, but a Bézout domain need not be a Noetherian ring, so it could have non-finitely generated ideals ; if so, it is not a unique factorization domain (UFD), but still is a GCD domain. The theory of Bézout domains retains many of the properties of PIDs, without requiring the Noetherian property. Bézout domains are named after the French mathematician Étienne Bézout.

In mathematics, more specifically ring theory, an atomic domain or factorization domain is an integral domain in which every non-zero non-unit can be written in at least one way as a finite product of irreducible elements. Atomic domains are different from unique factorization domains in that this decomposition of an element into irreducibles need not be unique; stated differently, an irreducible element is not necessarily a prime element.

In commutative algebra, an integrally closed domainA is an integral domain whose integral closure in its field of fractions is A itself. Spelled out, this means that if x is an element of the field of fractions of A that is a root of a monic polynomial with coefficients in A, then x is itself an element of A. Many well-studied domains are integrally closed, as shown by the following chain of class inclusions:

In number theory, quadratic integers are a generalization of the usual integers to quadratic fields. Quadratic integers are algebraic integers of degree two, that is, solutions of equations of the form

In abstract algebra, the ascending chain condition can be applied to the posets of principal left, principal right, or principal two-sided ideals of a ring, partially ordered by inclusion. The ascending chain condition on principal ideals is satisfied if there is no infinite strictly ascending chain of principal ideals of the given type (left/right/two-sided) in the ring, or said another way, every ascending chain is eventually constant.

References