Gaussian integer

Last updated

In number theory, a Gaussian integer is a complex number whose real and imaginary parts are both integers. The Gaussian integers, with ordinary addition and multiplication of complex numbers, form an integral domain, usually written as or [1]

Contents

Gaussian integers share many properties with integers: they form a Euclidean domain, and have thus a Euclidean division and a Euclidean algorithm; this implies unique factorization and many related properties. However, Gaussian integers do not have a total ordering that respects arithmetic.

Gaussian integers are algebraic integers and form the simplest ring of quadratic integers.

Gaussian integers are named after the German mathematician Carl Friedrich Gauss.

Gaussian integers as lattice points in the complex plane Gaussian integer lattice.svg
Gaussian integers as lattice points in the complex plane

Basic definitions

The Gaussian integers are the set [1]

In other words, a Gaussian integer is a complex number such that its real and imaginary parts are both integers. Since the Gaussian integers are closed under addition and multiplication, they form a commutative ring, which is a subring of the field of complex numbers. It is thus an integral domain.

When considered within the complex plane, the Gaussian integers constitute the 2-dimensional integer lattice.

The conjugate of a Gaussian integer a + bi is the Gaussian integer abi.

The norm of a Gaussian integer is its product with its conjugate.

The norm of a Gaussian integer is thus the square of its absolute value as a complex number. The norm of a Gaussian integer is a nonnegative integer, which is a sum of two squares. Thus a norm cannot be of the form 4k + 3, with k integer.

The norm is multiplicative, that is, one has [2]

for every pair of Gaussian integers z, w. This can be shown directly, or by using the multiplicative property of the modulus of complex numbers.

The units of the ring of Gaussian integers (that is the Gaussian integers whose multiplicative inverse is also a Gaussian integer) are precisely the Gaussian integers with norm 1, that is, 1, –1, i and i. [3]

Euclidean division

Visualization of maximal distance to some Gaussian integer Gauss-euklid.svg
Visualization of maximal distance to some Gaussian integer

Gaussian integers have a Euclidean division (division with remainder) similar to that of integers and polynomials. This makes the Gaussian integers a Euclidean domain, and implies that Gaussian integers share with integers and polynomials many important properties such as the existence of a Euclidean algorithm for computing greatest common divisors, Bézout's identity, the principal ideal property, Euclid's lemma, the unique factorization theorem, and the Chinese remainder theorem, all of which can be proved using only Euclidean division.

A Euclidean division algorithm takes, in the ring of Gaussian integers, a dividend a and divisor b ≠ 0, and produces a quotient q and remainder r such that

In fact, one may make the remainder smaller:

Even with this better inequality, the quotient and the remainder are not necessarily unique, but one may refine the choice to ensure uniqueness.

To prove this, one may consider the complex number quotient x + iy = a/b. There are unique integers m and n such that 1/2 < xm1/2 and 1/2 < yn1/2, and thus N(xm + i(yn)) ≤ 1/2. Taking q = m + in, one has

with

and

The choice of xm and yn in a semi-open interval is required for uniqueness. This definition of Euclidean division may be interpreted geometrically in the complex plane (see the figure), by remarking that the distance from a complex number ξ to the closest Gaussian integer is at most 2/2. [4]

Principal ideals

Since the ring G of Gaussian integers is a Euclidean domain, G is a principal ideal domain, which means that every ideal of G is principal. Explicitly, an ideal I is a subset of a ring R such that every sum of elements of I and every product of an element of I by an element of R belong to I. An ideal is principal if it consists of all multiples of a single element g, that is, it has the form

In this case, one says that the ideal is generated by g or that g is a generator of the ideal.

Every ideal I in the ring of the Gaussian integers is principal, because, if one chooses in I a nonzero element g of minimal norm, for every element x of I, the remainder of Euclidean division of x by g belongs also to I and has a norm that is smaller than that of g; because of the choice of g, this norm is zero, and thus the remainder is also zero. That is, one has x = qg, where q is the quotient.

For any g, the ideal generated by g is also generated by any associate of g, that is, g, gi, –g, –gi; no other element generates the same ideal. As all the generators of an ideal have the same norm, the norm of an ideal is the norm of any of its generators.

In some circumstances, it is useful to choose, once for all, a generator for each ideal. There are two classical ways for doing that, both considering first the ideals of odd norm. If the g = a + bi has an odd norm a2 + b2, then one of a and b is odd, and the other is even. Thus g has exactly one associate with a real part a that is odd and positive. In his original paper, Gauss made another choice, by choosing the unique associate such that the remainder of its division by 2 + 2i is one. In fact, as N(2 + 2i) = 8, the norm of the remainder is not greater than 4. As this norm is odd, and 3 is not the norm of a Gaussian integer, the norm of the remainder is one, that is, the remainder is a unit. Multiplying g by the inverse of this unit, one finds an associate that has one as a remainder, when divided by 2 + 2i.

If the norm of g is even, then either g = 2kh or g = 2kh(1 + i), where k is a positive integer, and N(h) is odd. Thus, one chooses the associate of g for getting a h which fits the choice of the associates for elements of odd norm.

Gaussian primes

As the Gaussian integers form a principal ideal domain they form also a unique factorization domain. This implies that a Gaussian integer is irreducible (that is, it is not the product of two non-units) if and only if it is prime (that is, it generates a prime ideal).

The prime elements of Z[i] are also known as Gaussian primes. An associate of a Gaussian prime is also a Gaussian prime. The conjugate of a Gaussian prime is also a Gaussian prime (this implies that Gaussian primes are symmetric about the real and imaginary axes).

A positive integer is a Gaussian prime if and only if it is a prime number that is congruent to 3 modulo 4 (that is, it may be written 4n + 3, with n a nonnegative integer) (sequence A002145 in the OEIS ). The other prime numbers are not Gaussian primes, but each is the product of two conjugate Gaussian primes.

A Gaussian integer a + bi is a Gaussian prime if and only if either:

In other words, a Gaussian integer is a Gaussian prime if and only if either its norm is a prime number, or it is the product of a unit (±1, ±i) and a prime number of the form 4n + 3.

It follows that there are three cases for the factorization of a prime number p in the Gaussian integers:

Unique factorization

As for every unique factorization domain, every Gaussian integer may be factored as a product of a unit and Gaussian primes, and this factorization is unique up to the order of the factors, and the replacement of any prime by any of its associates (together with a corresponding change of the unit factor).

If one chooses, once for all, a fixed Gaussian prime for each equivalence class of associated primes, and if one takes only these selected primes in the factorization, then one obtains a prime factorization which is unique up to the order of the factors. With the choices described above, the resulting unique factorization has the form

where u is a unit (that is, u ∈ {1, –1, i, –i}), e0 and k are nonnegative integers, e1, …, ek are positive integers, and p1, …, pk are distinct Gaussian primes such that, depending on the choice of selected associates,

An advantage of the second choice is that the selected associates behave well under products for Gaussian integers of odd norm. On the other hand, the selected associate for the real Gaussian primes are negative integers. For example, the factorization of 231 in the integers, and with the first choice of associates is 3 × 7 × 11, while it is (–1) × (–3) × (–7) × (–11) with the second choice.

Gaussian rationals

The field of Gaussian rationals is the field of fractions of the ring of Gaussian integers. It consists of the complex numbers whose real and imaginary part are both rational.

The ring of Gaussian integers is the integral closure of the integers in the Gaussian rationals.

This implies that Gaussian integers are quadratic integers and that a Gaussian rational is a Gaussian integer, if and only if it is a solution of an equation

with c and d integers. In fact a + bi is solution of the equation

and this equation has integer coefficients if and only if a and b are both integers.

Greatest common divisor

As for any unique factorization domain, a greatest common divisor (gcd) of two Gaussian integers a, b is a Gaussian integer d that is a common divisor of a and b, which has all common divisors of a and b as divisor. That is (where | denotes the divisibility relation),

Thus, greatest is meant relatively to the divisibility relation, and not for an ordering of the ring (for integers, both meanings of greatest coincide).

More technically, a greatest common divisor of a and b is a generator of the ideal generated by a and b (this characterization is valid for principal ideal domains, but not, in general, for unique factorization domains).

The greatest common divisor of two Gaussian integers is not unique, but is defined up to the multiplication by a unit. That is, given a greatest common divisor d of a and b, the greatest common divisors of a and b are d, –d, id, and id.

There are several ways for computing a greatest common divisor of two Gaussian integers a and b. When one knows the prime factorizations of a and b,

where the primes pm are pairwise non associated, and the exponents μm non-associated, a greatest common divisor is

with

Unfortunately, except in simple cases, the prime factorization is difficult to compute, and Euclidean algorithm leads to a much easier (and faster) computation. This algorithm consists of replacing of the input (a, b) by (b, r), where r is the remainder of the Euclidean division of a by b, and repeating this operation until getting a zero remainder, that is a pair (d, 0). This process terminates, because, at each step, the norm of the second Gaussian integer decreases. The resulting d is a greatest common divisor, because (at each step) b and r = abq have the same divisors as a and b, and thus the same greatest common divisor.

This method of computation works always, but is not as simple as for integers because Euclidean division is more complicated. Therefore, a third method is often preferred for hand-written computations. It consists in remarking that the norm N(d) of the greatest common divisor of a and b is a common divisor of N(a), N(b), and N(a + b). When the greatest common divisor D of these three integers has few factors, then it is easy to test, for common divisor, all Gaussian integers with a norm dividing D.

For example, if a = 5 + 3i, and b = 2 – 8i, one has N(a) = 34, N(b) = 68, and N(a + b) = 74. As the greatest common divisor of the three norms is 2, the greatest common divisor of a and b has 1 or 2 as a norm. As a gaussian integer of norm 2 is necessary associated to 1 + i, and as 1 + i divides a and b, then the greatest common divisor is 1 + i.

If b is replaced by its conjugate b = 2 + 8i, then the greatest common divisor of the three norms is 34, the norm of a, thus one may guess that the greatest common divisor is a, that is, that a | b. In fact, one has 2 + 8i = (5 + 3i)(1 + i).

Congruences and residue classes

Given a Gaussian integer z0, called a modulus, two Gaussian integers z1,z2 are congruent moduloz0, if their difference is a multiple of z0, that is if there exists a Gaussian integer q such that z1z2 = qz0. In other words, two Gaussian integers are congruent modulo z0, if their difference belongs to the ideal generated by z0. This is denoted as z1z2 (mod z0).

The congruence modulo z0 is an equivalence relation (also called a congruence relation), which defines a partition of the Gaussian integers into equivalence classes, called here congruence classes or residue classes. The set of the residue classes is usually denoted Z[i]/z0Z[i], or Z[i]/z0, or simply Z[i]/z0.

The residue class of a Gaussian integer a is the set

of all Gaussian integers that are congruent to a. It follows that a = b if and only if ab (mod z0).

Addition and multiplication are compatible with congruences. This means that a1b1 (mod z0) and a2b2 (mod z0) imply a1 + a2b1 + b2 (mod z0) and a1a2b1b2 (mod z0). This defines well-defined operations (that is independent of the choice of representatives) on the residue classes:

With these operations, the residue classes form a commutative ring, the quotient ring of the Gaussian integers by the ideal generated by z0, which is also traditionally called the residue class ring modulo z0 (for more details, see Quotient ring).

Examples

Describing residue classes

All 13 residue classes with their minimal residues (blue dots) in the square Q00 (light green background) for the modulus z0 = 3 + 2i. One residue class with z = 2 - 4i [?] -i (mod z0) is highlighted with yellow/orange dots. Gauss-Restklassen-wiki.png
All 13 residue classes with their minimal residues (blue dots) in the square Q00 (light green background) for the modulus z0 = 3 + 2i. One residue class with z = 2 − 4i ≡ −i (mod z0) is highlighted with yellow/orange dots.

Given a modulus z0, all elements of a residue class have the same remainder for the Euclidean division by z0, provided one uses the division with unique quotient and remainder, which is described above. Thus enumerating the residue classes is equivalent with enumerating the possible remainders. This can be done geometrically in the following way.

In the complex plane, one may consider a square grid, whose squares are delimited by the two lines

with s and t integers (blue lines in the figure). These divide the plane in semi-open squares (where m and n are integers)

The semi-open intervals that occur in the definition of Qmn have been chosen in order that every complex number belong to exactly one square; that is, the squares Qmn form a partition of the complex plane. One has

This implies that every Gaussian integer is congruent modulo z0 to a unique Gaussian integer in Q00 (the green square in the figure), which its remainder for the division by z0. In other words, every residue class contains exactly one element in Q00.

The Gaussian integers in Q00 (or in its boundary) are sometimes called minimal residues because their norm are not greater than the norm of any other Gaussian integer in the same residue class (Gauss called them absolutely smallest residues).

From this one can deduce by geometrical considerations, that the number of residue classes modulo a Gaussian integer z0 = a + bi equals its norm N(z0) = a2 + b2 (see below for a proof; similarly, for integers, the number of residue classes modulo n is its absolute value |n|).

Proof

The relation Qmn = (m + in)z0 + Q00 means that all Qmn are obtained from Q00 by translating it by a Gaussian integer. This implies that all Qmn have the same area N = N(z0), and contain the same number ng of Gaussian integers.

Generally, the number of grid points (here the Gaussian integers) in an arbitrary square with the area A is A + Θ(A) (see Big theta for the notation). If one considers a big square consisting of k × k squares Qmn, then it contains k2N + O(kN) grid points. It follows k2ng = k2N + Θ(kN), and thus ng = N + Θ(N/k), after a division by k2. Taking the limit when k tends to the infinity gives ng = N = N(z0).

Residue class fields

The residue class ring modulo a Gaussian integer z0 is a field if and only if is a Gaussian prime.

If z0 is a decomposed prime or the ramified prime 1 + i (that is, if its norm N(z0) is a prime number, which is either 2 or a prime congruent to 1 modulo 4), then the residue class field has a prime number of elements (that is, N(z0)). It is thus isomorphic to the field of the integers modulo N(z0).

If, on the other hand, z0 is an inert prime (that is, N(z0) = p2 is the square of a prime number, which is congruent to 3 modulo 4), then the residue class field has p2 elements, and it is an extension of degree 2 (unique, up to an isomorphism) of the prime field with p elements (the integers modulo p).

Primitive residue class group and Euler's totient function

Many theorems (and their proofs) for moduli of integers can be directly transferred to moduli of Gaussian integers, if one replaces the absolute value of the modulus by the norm. This holds especially for the primitive residue class group (also called multiplicative group of integers modulo n) and Euler's totient function. The primitive residue class group of a modulus z is defined as the subset of its residue classes, which contains all residue classes a that are coprime to z, i.e. (a,z) = 1. Obviously, this system builds a multiplicative group. The number of its elements shall be denoted by ϕ(z) (analogously to Euler's totient function φ(n) for integers n).

For Gaussian primes it immediately follows that ϕ(p) = |p|2 − 1 and for arbitrary composite Gaussian integers

Euler's product formula can be derived as

where the product is to build over all prime divisors pm of z (with νm > 0). Also the important theorem of Euler can be directly transferred:

For all a with (a,z) = 1, it holds that aϕ(z) ≡ 1 (mod z).

Historical background

The ring of Gaussian integers was introduced by Carl Friedrich Gauss in his second monograph on quartic reciprocity (1832). [6] The theorem of quadratic reciprocity (which he had first succeeded in proving in 1796) relates the solvability of the congruence x2q (mod p) to that of x2p (mod q). Similarly, cubic reciprocity relates the solvability of x3q (mod p) to that of x3p (mod q), and biquadratic (or quartic) reciprocity is a relation between x4q (mod p) and x4p (mod q). Gauss discovered that the law of biquadratic reciprocity and its supplements were more easily stated and proved as statements about "whole complex numbers" (i.e. the Gaussian integers) than they are as statements about ordinary whole numbers (i.e. the integers).

In a footnote he notes that the Eisenstein integers are the natural domain for stating and proving results on cubic reciprocity and indicates that similar extensions of the integers are the appropriate domains for studying higher reciprocity laws.

This paper not only introduced the Gaussian integers and proved they are a unique factorization domain, it also introduced the terms norm, unit, primary, and associate, which are now standard in algebraic number theory.

Unsolved problems

The distribution of the small Gaussian primes in the complex plane Gauss-primes-768x768.png
The distribution of the small Gaussian primes in the complex plane

Most of the unsolved problems are related to distribution of Gaussian primes in the plane.

There are also conjectures and unsolved problems about the Gaussian primes. Two of them are:

See also

Notes

  1. 1 2 Fraleigh (1976 , p. 286)
  2. Fraleigh (1976 , p. 289)
  3. Fraleigh (1976 , p. 288)
  4. Fraleigh (1976 , p. 287)
  5. Gauss (1831 , p. 546)
  6. Kleiner (1998)
  7. Ribenboim, Ch.III.4.D Ch. 6.II, Ch. 6.IV (Hardy & Littlewood's conjecture E and F)
  8. Gethner, Ellen; Wagon, Stan; Wick, Brian (1998). "A stroll through the Gaussian primes". The American Mathematical Monthly . 105 (4): 327–337. doi:10.2307/2589708. JSTOR   2589708. MR   1614871. Zbl   0946.11002.
  9. Guy, Richard K. (2004). Unsolved problems in number theory (3rd ed.). Springer-Verlag. pp. 55–57. ISBN   978-0-387-20860-2. Zbl   1058.11001.

Related Research Articles

<span class="mw-page-title-main">Chinese remainder theorem</span> Theorem for solving simultaneous congruences

In mathematics, the Chinese remainder theorem states that if one knows the remainders of the Euclidean division of an integer n by several integers, then one can determine uniquely the remainder of the division of n by the product of these integers, under the condition that the divisors are pairwise coprime.

In mathematics, more specifically in ring theory, a Euclidean domain is an integral domain that can be endowed with a Euclidean function which allows a suitable generalization of the Euclidean division of integers. This generalized Euclidean algorithm can be put to many of the same uses as Euclid's original algorithm in the ring of integers: in any Euclidean domain, one can apply the Euclidean algorithm to compute the greatest common divisor of any two elements. In particular, the greatest common divisor of any two elements exists and can be written as a linear combination of them. Also every ideal in a Euclidean domain is principal, which implies a suitable generalization of the fundamental theorem of arithmetic: every Euclidean domain is a unique factorization domain.

<span class="mw-page-title-main">Euclidean algorithm</span> Algorithm for computing greatest common divisors

In mathematics, the Euclidean algorithm, or Euclid's algorithm, is an efficient method for computing the greatest common divisor (GCD) of two integers (numbers), the largest number that divides them both without a remainder. It is named after the ancient Greek mathematician Euclid, who first described it in his Elements . It is an example of an algorithm, a step-by-step procedure for performing a calculation according to well-defined rules, and is one of the oldest algorithms in common use. It can be used to reduce fractions to their simplest form, and is a part of many other number-theoretic and cryptographic calculations.

<span class="mw-page-title-main">Fundamental theorem of arithmetic</span> Integers have unique prime factorizations

In mathematics, the fundamental theorem of arithmetic, also called the unique factorization theorem and prime factorization theorem, states that every integer greater than 1 can be represented uniquely as a product of prime numbers, up to the order of the factors. For example,

<span class="mw-page-title-main">Modular arithmetic</span> Computation modulo a fixed integer

In mathematics, modular arithmetic is a system of arithmetic for integers, where numbers "wrap around" when reaching a certain value, called the modulus. The modern approach to modular arithmetic was developed by Carl Friedrich Gauss in his book Disquisitiones Arithmeticae, published in 1801.

In mathematics, a principal ideal domain, or PID, is an integral domain in which every ideal is principal, i.e., can be generated by a single element. More generally, a principal ideal ring is a nonzero commutative ring whose ideals are principal, although some authors refer to PIDs as principal rings. The distinction is that a principal ideal ring may have zero divisors whereas a principal ideal domain cannot.

<span class="mw-page-title-main">Quadratic reciprocity</span> Gives conditions for the solvability of quadratic equations modulo prime numbers

In number theory, the law of quadratic reciprocity is a theorem about modular arithmetic that gives conditions for the solvability of quadratic equations modulo prime numbers. Due to its subtlety, it has many formulations, but the most standard statement is:

In mathematics, a unique factorization domain (UFD) is a ring in which a statement analogous to the fundamental theorem of arithmetic holds. Specifically, a UFD is an integral domain in which every non-zero non-unit element can be written as a product of irreducible elements, uniquely up to order and units.

<span class="mw-page-title-main">Factorization</span> (Mathematical) decomposition into a product

In mathematics, factorization (or factorisation, see English spelling differences) or factoring consists of writing a number or another mathematical object as a product of several factors, usually smaller or simpler objects of the same kind. For example, 3 × 5 is an integer factorization of 15, and (x – 2)(x + 2) is a polynomial factorization of x2 – 4.

In number theory, the ideal class group of an algebraic number field K is the quotient group JK /PK where JK is the group of fractional ideals of the ring of integers of K, and PK is its subgroup of principal ideals. The class group is a measure of the extent to which unique factorization fails in the ring of integers of K. The order of the group, which is finite, is called the class number of K.

<span class="mw-page-title-main">Algebraic number theory</span> Branch of number theory

Algebraic number theory is a branch of number theory that uses the techniques of abstract algebra to study the integers, rational numbers, and their generalizations. Number-theoretic questions are expressed in terms of properties of algebraic objects such as algebraic number fields and their rings of integers, finite fields, and function fields. These properties, such as whether a ring admits unique factorization, the behavior of ideals, and the Galois groups of fields, can resolve questions of primary importance in number theory, like the existence of solutions to Diophantine equations.

In number theory, an integer q is called a quadratic residue modulo n if it is congruent to a perfect square modulo n; i.e., if there exists an integer x such that:

In mathematics, a Hurwitz quaternion is a quaternion whose components are either all integers or all half-integers. The set of all Hurwitz quaternions is

In mathematics, the interplay between the Galois group G of a Galois extension L of a number field K, and the way the prime ideals P of the ring of integers OK factorise as products of prime ideals of OL, provides one of the richest parts of algebraic number theory. The splitting of prime ideals in Galois extensions is sometimes attributed to David Hilbert by calling it Hilbert theory. There is a geometric analogue, for ramified coverings of Riemann surfaces, which is simpler in that only one kind of subgroup of G need be considered, rather than two. This was certainly familiar before Hilbert.

In additive number theory, Fermat's theorem on sums of two squares states that an odd prime p can be expressed as:

<span class="mw-page-title-main">Eisenstein integer</span> Complex number whose mapping on a coordinate plane produces a triangular lattice

In mathematics, the Eisenstein integers, occasionally also known as Eulerian integers, are the complex numbers of the form

In cryptography, most public key cryptosystems are founded on problems that are believed to be intractable. The higher residuosity problem is one such problem. This problem is easier to solve than integer factorization, so the assumption that this problem is hard to solve is stronger than the assumption that integer factorization is hard.

Cubic reciprocity is a collection of theorems in elementary and algebraic number theory that state conditions under which the congruence x3 ≡ p (mod q) is solvable; the word "reciprocity" comes from the form of the main theorem, which states that if p and q are primary numbers in the ring of Eisenstein integers, both coprime to 3, the congruence x3p is solvable if and only if x3q is solvable.

In mathematics, particularly in the area of arithmetic, a modular multiplicative inverse of an integer a is an integer x such that the product ax is congruent to 1 with respect to the modulus m. In the standard notation of modular arithmetic this congruence is written as

In number theory, quadratic integers are a generalization of the usual integers to quadratic fields. Quadratic integers are algebraic integers of degree two, that is, solutions of equations of the form

References