Supersingular prime (moonshine theory)

Last updated

In the mathematical branch of moonshine theory, a supersingular prime is a prime number that divides the order of the Monster group M, which is the largest sporadic simple group. There are precisely fifteen supersingular prime numbers: the first eleven primes (2, 3, 5, 7, 11, 13, 17, 19, 23, 29, and 31), as well as 41, 47, 59, and 71. (sequence A002267 in the OEIS )

The non-supersingular primes are 37, 43, 53, 61, 67, and any prime number greater than or equal to 73.

Supersingular primes are related to the notion of supersingular elliptic curves as follows. For a prime number p, the following are equivalent:

  1. The modular curve X0+(p) = X0(p) / wp, where wp is the Fricke involution of X0(p), has genus zero.
  2. Every supersingular elliptic curve in characteristic p can be defined over the prime subfield Fp.
  3. The order of the Monster group is divisible by p.

The equivalence is due to Andrew Ogg. More precisely, in 1975 Ogg showed that the primes satisfying the first condition are exactly the 15 supersingular primes listed above and shortly thereafter learned of the (then conjectural) existence of a sporadic simple group having exactly these primes as prime divisors. This strange coincidence was the beginning of the theory of monstrous moonshine.

All supersingular primes are Chen primes, but 37, 53, and 67 are also Chen primes, and there are infinitely many Chen primes greater than 73.

See also

Related Research Articles

<span class="mw-page-title-main">Monster group</span> Finite simple group

In the area of abstract algebra known as group theory, the monster group M (also known as the Fischer–Griess monster, or the friendly giant) is the largest sporadic simple group, having order
   246 · 320 · 59 · 76 · 112 · 133 · 17 · 19 · 23 · 29 · 31 · 41 · 47 · 59 · 71
   = 808,017,424,794,512,875,886,459,904,961,710,757,005,754,368,000,000,000
   ≈ 8×1053.

In mathematics, the Birch and Swinnerton-Dyer conjecture describes the set of rational solutions to equations defining an elliptic curve. It is an open problem in the field of number theory and is widely recognized as one of the most challenging mathematical problems. It is named after mathematicians Bryan John Birch and Peter Swinnerton-Dyer, who developed the conjecture during the first half of the 1960s with the help of machine computation. As of 2024, only special cases of the conjecture have been proven.

In mathematics, a modular equation is an algebraic equation satisfied by moduli, in the sense of moduli problems. That is, given a number of functions on a moduli space, a modular equation is an equation holding between them, or in other words an identity for moduli.

In mathematics, complex multiplication (CM) is the theory of elliptic curves E that have an endomorphism ring larger than the integers. Put another way, it contains the theory of elliptic functions with extra symmetries, such as are visible when the period lattice is the Gaussian integer lattice or Eisenstein integer lattice.

In number theory and algebraic geometry, a modular curveY(Γ) is a Riemann surface, or the corresponding algebraic curve, constructed as a quotient of the complex upper half-plane H by the action of a congruence subgroup Γ of the modular group of integral 2×2 matrices SL(2, Z). The term modular curve can also be used to refer to the compactified modular curvesX(Γ) which are compactifications obtained by adding finitely many points to this quotient. The points of a modular curve parametrize isomorphism classes of elliptic curves, together with some additional structure depending on the group Γ. This interpretation allows one to give a purely algebraic definition of modular curves, without reference to complex numbers, and, moreover, prove that modular curves are defined either over the field of rational numbers Q or a cyclotomic field Qn). The latter fact and its generalizations are of fundamental importance in number theory.

In mathematics, monstrous moonshine, or moonshine theory, is the unexpected connection between the monster group M and modular functions, in particular, the j function. The initial numerical observation was made by John McKay in 1978, and the phrase was coined by John Conway and Simon P. Norton in 1979.

In mathematics, a supersingular prime is a prime number satisfying one of the following concepts:

<span class="mw-page-title-main">Lyons group</span>

In the area of modern algebra known as group theory, the Lyons groupLy or Lyons-Sims groupLyS is a sporadic simple group of order

<span class="mw-page-title-main">O'Nan group</span>

In the area of abstract algebra known as group theory, the O'Nan groupO'N or O'Nan–Sims group is a sporadic simple group of order

In mathematics, a prime number p is called a Chen prime if p + 2 is either a prime or a product of two primes. The even number 2p + 2 therefore satisfies Chen's theorem.

In algebraic geometry, supersingular elliptic curves form a certain class of elliptic curves over a field of characteristic p > 0 with unusually large endomorphism rings. Elliptic curves over such fields which are not supersingular are called ordinary and these two classes of elliptic curves behave fundamentally differently in many aspects. Hasse (1936) discovered supersingular elliptic curves during his work on the Riemann hypothesis for elliptic curves by observing that positive characteristic elliptic curves could have endomorphism rings of unusually large rank 4, and Deuring (1941) developed their basic theory.

In number theory, the classical modular curve is an irreducible plane algebraic curve given by an equation

<span class="mw-page-title-main">Exceptional object</span>

Many branches of mathematics study objects of a given type and prove a classification theorem. A common theme is that the classification results in a number of series of objects and a finite number of exceptions — often with desirable properties — that do not fit into any series. These are known as exceptional objects. In many cases, these exceptional objects play a further and important role in the subject. Furthermore, the exceptional objects in one branch of mathematics often relate to the exceptional objects in others.

In mathematics, elliptic cohomology is a cohomology theory in the sense of algebraic topology. It is related to elliptic curves and modular forms.

In algebraic number theory, a supersingular prime for a given elliptic curve is a prime number with a certain relationship to that curve. If the curve E is defined over the rational numbers, then a prime p is supersingular for E if the reduction of E modulo p is a supersingular elliptic curve over the residue field Fp.

<span class="mw-page-title-main">Andrew Ogg</span> American mathematician

Andrew Pollard Ogg is an American mathematician, a professor emeritus of mathematics at the University of California, Berkeley.

Koichiro Harada is a Japanese mathematician working on finite group theory.

In algebraic geometry and number theory, the torsion conjecture or uniform boundedness conjecture for torsion points for abelian varieties states that the order of the torsion group of an abelian variety over a number field can be bounded in terms of the dimension of the variety and the number field. A stronger version of the conjecture is that the torsion is bounded in terms of the dimension of the variety and the degree of the number field. The torsion conjecture has been completely resolved in the case of elliptic curves.

In mathematics, the conductor of an elliptic curve over the field of rational numbers is an integral ideal, which is analogous to the Artin conductor of a Galois representation. It is given as a product of prime ideals, together with associated exponents, which encode the ramification in the field extensions generated by the points of finite order in the group law of the elliptic curve. The primes involved in the conductor are precisely the primes of bad reduction of the curve: this is the Néron–Ogg–Shafarevich criterion.

In mathematics, the supersingular isogeny graphs are a class of expander graphs that arise in computational number theory and have been applied in elliptic-curve cryptography. Their vertices represent supersingular elliptic curves over finite fields and their edges represent isogenies between curves.

References