Euclidean domain

Last updated

In mathematics, more specifically in ring theory, a Euclidean domain (also called a Euclidean ring) is an integral domain that can be endowed with a Euclidean function which allows a suitable generalization of the Euclidean division of integers. This generalized Euclidean algorithm can be put to many of the same uses as Euclid's original algorithm in the ring of integers: in any Euclidean domain, one can apply the Euclidean algorithm to compute the greatest common divisor of any two elements. In particular, the greatest common divisor of any two elements exists and can be written as a linear combination of them (Bézout's identity). Also every ideal in a Euclidean domain is principal, which implies a suitable generalization of the fundamental theorem of arithmetic: every Euclidean domain is a unique factorization domain.

Contents

It is important to compare the class of Euclidean domains with the larger class of principal ideal domains (PIDs). An arbitrary PID has much the same "structural properties" of a Euclidean domain (or, indeed, even of the ring of integers), but when an explicit algorithm for Euclidean division is known, one may use the Euclidean algorithm and extended Euclidean algorithm to compute greatest common divisors and Bézout's identity. In particular, the existence of efficient algorithms for Euclidean division of integers and of polynomials in one variable over a field is of basic importance in computer algebra.

So, given an integral domain R, it is often very useful to know that R has a Euclidean function: in particular, this implies that R is a PID. However, if there is no "obvious" Euclidean function, then determining whether R is a PID is generally a much easier problem than determining whether it is a Euclidean domain.

Euclidean domains appear in the following chain of class inclusions:

rngs rings commutative rings integral domains integrally closed domains GCD domains unique factorization domains principal ideal domains Euclidean domains fields algebraically closed fields

Definition

Let R be an integral domain. A Euclidean function on R is a function f from R\{0} to the non-negative integers satisfying the following fundamental division-with-remainder property:

A Euclidean domain is an integral domain which can be endowed with at least one Euclidean function. A particular Euclidean function f is not part of the definition of a Euclidean domain, as, in general, a Euclidean domain may admit many different Euclidean functions.

In this context, q and r are called respectively a quotient and a remainder of the division (or Euclidean division) of a by b. In contrast with the case of integers and polynomials, the quotient is generally not uniquely defined, but when a quotient has been chosen, the remainder is uniquely defined.

Most algebra texts require a Euclidean function to have the following additional property:

However, one can show that (EF1) alone suffices to define a Euclidean domain; if an integral domain R is endowed with a function g satisfying (EF1), then R can also be endowed with a function satisfying both (EF1) and (EF2) simultaneously. Indeed, for a in R\{0} , one can define f(a) as follows: [1]

In words, one may define f(a) to be the minimum value attained by g on the set of all non-zero elements of the principal ideal generated by a.

A Euclidean function f is multiplicative if f(ab) = f(a)f(b) and f(a) is never zero. It follows that f(1) = 1. More generally, f(a) = 1 if and only if a is a unit.

Notes on the definition

Many authors use other terms in place of "Euclidean function", such as "degree function", "valuation function", "gauge function" or "norm function". [2] Some authors also require the domain of the Euclidean function to be the entire ring R; [2] however, this does not essentially affect the definition, since (EF1) does not involve the value of f(0). The definition is sometimes generalized by allowing the Euclidean function to take its values in any well-ordered set; this weakening does not affect the most important implications of the Euclidean property.

The property (EF1) can be restated as follows: for any principal ideal I of R with nonzero generator b, all nonzero classes of the quotient ring R/I have a representative r with f(r) < f(b). Since the possible values of f are well-ordered, this property can be established by showing that f(r) < f(b) for any rI with minimal value of f(r) in its class. Note that, for a Euclidean function that is so established, there need not exist an effective method to determine q and r in (EF1).

Examples

Examples of Euclidean domains include:

Examples of domains that are not Euclidean domains include:

Properties

Let R be a domain and f a Euclidean function on R. Then:

However, in many finite extensions of Q with trivial class group, the ring of integers is Euclidean (not necessarily with respect to the absolute value of the field norm; see below). Assuming the extended Riemann hypothesis, if K is a finite extension of Q and the ring of integers of K is a PID with an infinite number of units, then the ring of integers is Euclidean. [12] In particular this applies to the case of totally real quadratic number fields with trivial class group. In addition (and without assuming ERH), if the field K is a Galois extension of Q, has trivial class group and unit rank strictly greater than three, then the ring of integers is Euclidean. [13] An immediate corollary of this is that if the number field is Galois over Q, its class group is trivial and the extension has degree greater than 8 then the ring of integers is necessarily Euclidean.

Norm-Euclidean fields

Algebraic number fields K come with a canonical norm function on them: the absolute value of the field norm N that takes an algebraic element α to the product of all the conjugates of α. This norm maps the ring of integers of a number field K, say OK, to the nonnegative rational integers, so it is a candidate to be a Euclidean norm on this ring. If this norm satisfies the axioms of a Euclidean function then the number field K is called norm-Euclidean or simply Euclidean. [14] [15] Strictly speaking it is the ring of integers that is Euclidean since fields are trivially Euclidean domains, but the terminology is standard.

If a field is not norm-Euclidean then that does not mean the ring of integers is not Euclidean, just that the field norm does not satisfy the axioms of a Euclidean function. In fact, the rings of integers of number fields may be divided in several classes:

The norm-Euclidean quadratic fields have been fully classified; they are where takes the values

−11, −7, −3, −2, −1, 2, 3, 5, 6, 7, 11, 13, 17, 19, 21, 29, 33, 37, 41, 57, 73 (sequence A048981 in the OEIS ). [17]

Every Euclidean imaginary quadratic field is norm-Euclidean and is one of the five first fields in the preceding list.

See also

Notes

  1. Rogers, Kenneth (1971), "The Axioms for Euclidean Domains", American Mathematical Monthly , 78 (10): 1127–8, doi:10.2307/2316324, JSTOR   2316324, Zbl   0227.13007
  2. 1 2 Dummit, David S.; Foote, Richard M. (2004). Abstract Algebra. Wiley. p. 270. ISBN   9780471433347.
  3. Fraleigh & Katz 1967 , p. 377, Example 1
  4. Fraleigh & Katz 1967 , p. 377, Example 2
  5. Samuel, Pierre (1 October 1971). "About Euclidean rings". Journal of Algebra. 19 (2): 282–301 (p. 285). doi: 10.1016/0021-8693(71)90110-4 . ISSN   0021-8693.
  6. Motzkin, Th (December 1949). "The Euclidean algorithm". Bulletin of the American Mathematical Society. 55 (12): 1142–1146. ISSN   0002-9904.
  7. Pierre, Samuel (1964). Lectures on Unique Factorization Domains (PDF). Tata Institute of Fundamental Research. pp. 27–28.
  8. "Quotient of polynomials, PID but not Euclidean domain?".
  9. Fraleigh & Katz 1967 , p. 377, Theorem 7.4
  10. Fraleigh & Katz 1967 , p. 380, Theorem 7.7
  11. Motzkin, Theodore (1949), "The Euclidean algorithm", Bulletin of the American Mathematical Society , 55 (12): 1142–6, doi: 10.1090/S0002-9904-1949-09344-8 , Zbl   0035.30302
  12. Weinberger, Peter J. (1973), "On Euclidean rings of algebraic integers", Proceedings of Symposia in Pure Mathematics, AMS, 24: 321–332, doi:10.1090/pspum/024/0337902, ISBN   9780821814246
  13. Harper, Malcolm; Murty, M. Ram (2004), "Euclidean rings of algebraic integers" (PDF), Canadian Journal of Mathematics, 56 (1): 71–76, CiteSeerX   10.1.1.163.7917 , doi:10.4153/CJM-2004-004-5
  14. Ribenboim, Paulo (1972). Algebraic Numbers. Wiley-Interscience. ISBN   978-0-471-71804-8.
  15. Hardy, G.H.; Wright, E.M.; Silverman, Joseph; Wiles, Andrew (2008). An Introduction to the Theory of Numbers (6th ed.). Oxford University Press. ISBN   978-0-19-921986-5.
  16. Clark, David A. (1994). "A quadratic field which is Euclidean but not norm-Euclidean". Manuscripta Mathematica . 83 (3–4): 327–330. CiteSeerX   10.1.1.360.6129 . doi:10.1007/BF02567617. Zbl   0817.11047.
  17. LeVeque, William J. (2002) [1956]. Topics in Number Theory. Vol. I and II. Dover. pp.  II:57, 81. ISBN   978-0-486-42539-9. Zbl   1009.11001.

Related Research Articles

In mathematics, Bézout's identity, named after Étienne Bézout who proved it for polynomials, is the following theorem:

<span class="mw-page-title-main">Euclidean algorithm</span> Algorithm for computing greatest common divisors

In mathematics, the Euclidean algorithm, or Euclid's algorithm, is an efficient method for computing the greatest common divisor (GCD) of two integers (numbers), the largest number that divides them both without a remainder. It is named after the ancient Greek mathematician Euclid, who first described it in his Elements . It is an example of an algorithm, a step-by-step procedure for performing a calculation according to well-defined rules, and is one of the oldest algorithms in common use. It can be used to reduce fractions to their simplest form, and is a part of many other number-theoretic and cryptographic calculations.

In mathematics, an integral domain is a nonzero commutative ring in which the product of any two nonzero elements is nonzero. Integral domains are generalizations of the ring of integers and provide a natural setting for studying divisibility. In an integral domain, every nonzero element a has the cancellation property, that is, if a ≠ 0, an equality ab = ac implies b = c.

In mathematics, a polynomial is a mathematical expression consisting of indeterminates and coefficients, that involves only the operations of addition, subtraction, multiplication, and positive-integer powers of variables. An example of a polynomial of a single indeterminate x is x2 − 4x + 7. An example with three indeterminates is x3 + 2xyz2yz + 1.

In mathematics, a principal ideal domain, or PID, is an integral domain in which every ideal is principal, i.e., can be generated by a single element. More generally, a principal ideal ring is a nonzero commutative ring whose ideals are principal, although some authors refer to PIDs as principal rings. The distinction is that a principal ideal ring may have zero divisors whereas a principal ideal domain cannot.

In mathematics, rings are algebraic structures that generalize fields: multiplication need not be commutative and multiplicative inverses need not exist. Informally, a ring is a set equipped with two binary operations satisfying properties analogous to those of addition and multiplication of integers. Ring elements may be numbers such as integers or complex numbers, but they may also be non-numerical objects such as polynomials, square matrices, functions, and power series.

<span class="mw-page-title-main">Gaussian integer</span> Complex number whose real and imaginary parts are both integers

In number theory, a Gaussian integer is a complex number whose real and imaginary parts are both integers. The Gaussian integers, with ordinary addition and multiplication of complex numbers, form an integral domain, usually written as or

In mathematics, a unique factorization domain (UFD) is a ring in which a statement analogous to the fundamental theorem of arithmetic holds. Specifically, a UFD is an integral domain in which every non-zero non-unit element can be written as a product of irreducible elements, uniquely up to order and units.

<span class="mw-page-title-main">Factorization</span> (Mathematical) decomposition into a product

In mathematics, factorization (or factorisation, see English spelling differences) or factoring consists of writing a number or another mathematical object as a product of several factors, usually smaller or simpler objects of the same kind. For example, 3 × 5 is an integer factorization of 15, and (x – 2)(x + 2) is a polynomial factorization of x2 – 4.

In abstract algebra, a Dedekind domain or Dedekind ring, named after Richard Dedekind, is an integral domain in which every nonzero proper ideal factors into a product of prime ideals. It can be shown that such a factorization is then necessarily unique up to the order of the factors. There are at least three other characterizations of Dedekind domains that are sometimes taken as the definition: see below.

In number theory, the ideal class group of an algebraic number field K is the quotient group JK /PK where JK is the group of fractional ideals of the ring of integers of K, and PK is its subgroup of principal ideals. The class group is a measure of the extent to which unique factorization fails in the ring of integers of K. The order of the group, which is finite, is called the class number of K.

In mathematics, an irreducible polynomial is, roughly speaking, a polynomial that cannot be factored into the product of two non-constant polynomials. The property of irreducibility depends on the nature of the coefficients that are accepted for the possible factors, that is, the field to which the coefficients of the polynomial and its possible factors are supposed to belong. For example, the polynomial x2 − 2 is a polynomial with integer coefficients, but, as every integer is also a real number, it is also a polynomial with real coefficients. It is irreducible if it is considered as a polynomial with integer coefficients, but it factors as if it is considered as a polynomial with real coefficients. One says that the polynomial x2 − 2 is irreducible over the integers but not over the reals.

In algebra, a monic polynomial is a non-zero univariate polynomial in which the leading coefficient is equal to 1. That is to say, a monic polynomial is one that can be written as

In mathematics, especially in the field of algebra, a polynomial ring or polynomial algebra is a ring formed from the set of polynomials in one or more indeterminates with coefficients in another ring, often a field.

In abstract algebra, a discrete valuation ring (DVR) is a principal ideal domain (PID) with exactly one non-zero maximal ideal.

In mathematics, a GCD domain is an integral domain R with the property that any two elements have a greatest common divisor (GCD); i.e., there is a unique minimal principal ideal containing the ideal generated by two given elements. Equivalently, any two elements of R have a least common multiple (LCM).

In mathematics, a Bézout domain is a form of a Prüfer domain. It is an integral domain in which the sum of two principal ideals is again a principal ideal. This means that for every pair of elements a Bézout identity holds, and that every finitely generated ideal is principal. Any principal ideal domain (PID) is a Bézout domain, but a Bézout domain need not be a Noetherian ring, so it could have non-finitely generated ideals ; if so, it is not a unique factorization domain (UFD), but still is a GCD domain. The theory of Bézout domains retains many of the properties of PIDs, without requiring the Noetherian property. Bézout domains are named after the French mathematician Étienne Bézout.

In algebra, the greatest common divisor of two polynomials is a polynomial, of the highest possible degree, that is a factor of both the two original polynomials. This concept is analogous to the greatest common divisor of two integers.

In algebra, the content of a nonzero polynomial with integer coefficients is the greatest common divisor of its coefficients. The primitive part of such a polynomial is the quotient of the polynomial by its content. Thus a polynomial is the product of its primitive part and its content, and this factorization is unique up to the multiplication of the content by a unit of the ring of the coefficients.

In mathematics, in particular the study of abstract algebra, a Dedekind–Hasse norm is a function on an integral domain that generalises the notion of a Euclidean function on Euclidean domains.

References