Reconstruction conjecture

Last updated
Unsolved problem in mathematics:

Are graphs uniquely determined by their subgraphs?

Informally, the reconstruction conjecture in graph theory says that graphs are determined uniquely by their subgraphs. It is due to Kelly [1] and Ulam. [2] [3]

Contents

Formal statements

A graph and the associated deck of single-vertex-deleted subgraphs. Note some of the cards show isomorphic graphs. A graph and its deck as described in the Reconstruction conjecture of graph theory.jpg
A graph and the associated deck of single-vertex-deleted subgraphs. Note some of the cards show isomorphic graphs.

Given a graph , a vertex-deleted subgraph of is a subgraph formed by deleting exactly one vertex from . By definition, it is an induced subgraph of .

For a graph , the deck of G, denoted , is the multiset of isomorphism classes of all vertex-deleted subgraphs of . Each graph in is called a card. Two graphs that have the same deck are said to be hypomorphic.

With these definitions, the conjecture can be stated as:

(The requirement that the graphs have at least three vertices is necessary because both graphs on two vertices have the same decks.)

Harary [4] suggested a stronger version of the conjecture:

Given a graph , an edge-deleted subgraph of is a subgraph formed by deleting exactly one edge from .

For a graph , the edge-deck of G, denoted , is the multiset of all isomorphism classes of edge-deleted subgraphs of . Each graph in is called an edge-card.

Recognizable properties

In context of the reconstruction conjecture, a graph property is called recognizable if one can determine the property from the deck of a graph. The following properties of graphs are recognizable:

Verification

Both the reconstruction and set reconstruction conjectures have been verified for all graphs with at most 13 vertices by Brendan McKay. [7] [8]

In a probabilistic sense, it has been shown by Béla Bollobás that almost all graphs are reconstructible. [9] This means that the probability that a randomly chosen graph on vertices is not reconstructible goes to 0 as goes to infinity. In fact, it was shown that not only are almost all graphs reconstructible, but in fact that the entire deck is not necessary to reconstruct them almost all graphs have the property that there exist three cards in their deck that uniquely determine the graph.

Reconstructible graph families

The conjecture has been verified for a number of infinite classes of graphs (and, trivially, their complements).

Reduction

The reconstruction conjecture is true if all 2-connected graphs are reconstructible. [12]

Duality

The vertex reconstruction conjecture obeys the duality that if can be reconstructed from its vertex deck , then its complement can be reconstructed from as follows: Start with , take the complement of every card in it to get , use this to reconstruct , then take the complement again to get .

Edge reconstruction does not obey any such duality: Indeed, for some classes of edge-reconstructible graphs it is not known if their complements are edge reconstructible.

Other structures

It has been shown that the following are not in general reconstructible:

See also

Further reading

For further information on this topic, see the survey by Nash-Williams. [19]

Related Research Articles

<span class="mw-page-title-main">Graph theory</span> Area of discrete mathematics

In mathematics, graph theory is the study of graphs, which are mathematical structures used to model pairwise relations between objects. A graph in this context is made up of vertices which are connected by edges. A distinction is made between undirected graphs, where edges link two vertices symmetrically, and directed graphs, where edges link two vertices asymmetrically. Graphs are one of the principal objects of study in discrete mathematics.

In combinatorics, Ramsey's theorem, in one of its graph-theoretic forms, states that one will find monochromatic cliques in any edge labelling (with colours) of a sufficiently large complete graph. To demonstrate the theorem for two colours (say, blue and red), let r and s be any two positive integers. Ramsey's theorem states that there exists a least positive integer R(r, s) for which every blue-red edge colouring of the complete graph on R(r, s) vertices contains a blue clique on r vertices or a red clique on s vertices. (Here R(r, s) signifies an integer that depends on both r and s.)

<span class="mw-page-title-main">Petersen graph</span> Cubic graph with 10 vertices and 15 edges

In the mathematical field of graph theory, the Petersen graph is an undirected graph with 10 vertices and 15 edges. It is a small graph that serves as a useful example and counterexample for many problems in graph theory. The Petersen graph is named after Julius Petersen, who in 1898 constructed it to be the smallest bridgeless cubic graph with no three-edge-coloring.

<span class="mw-page-title-main">Bipartite graph</span> Graph divided into two independent sets

In the mathematical field of graph theory, a bipartite graph is a graph whose vertices can be divided into two disjoint and independent sets and , that is, every edge connects a vertex in to one in . Vertex sets and are usually called the parts of the graph. Equivalently, a bipartite graph is a graph that does not contain any odd-length cycles.

<span class="mw-page-title-main">Hamiltonian path</span> Path in a graph that visits each vertex exactly once

In the mathematical field of graph theory, a Hamiltonian path is a path in an undirected or directed graph that visits each vertex exactly once. A Hamiltonian cycle is a cycle that visits each vertex exactly once. A Hamiltonian path that starts and ends at adjacent vertices can be completed by adding one more edge to form a Hamiltonian cycle, and removing any edge from a Hamiltonian cycle produces a Hamiltonian path. Determining whether such paths and cycles exist in graphs are NP-complete.

This is a glossary of graph theory. Graph theory is the study of graphs, systems of nodes or vertices connected in pairs by lines or edges.

In graph theory, an undirected graph H is called a minor of the graph G if H can be formed from G by deleting edges, vertices and by contracting edges.

In the mathematical discipline of graph theory, the line graph of an undirected graph G is another graph L(G) that represents the adjacencies between edges of G. L(G) is constructed in the following way: for each edge in G, make a vertex in L(G); for every two edges in G that have a vertex in common, make an edge between their corresponding vertices in L(G).

<span class="mw-page-title-main">Edge coloring</span> Problem of coloring a graphs edges such that meeting edges do not match

In graph theory, a proper edge coloring of a graph is an assignment of "colors" to the edges of the graph so that no two incident edges have the same color. For example, the figure to the right shows an edge coloring of a graph by the colors red, blue, and green. Edge colorings are one of several different types of graph coloring. The edge-coloring problem asks whether it is possible to color the edges of a given graph using at most k different colors, for a given value of k, or with the fewest possible colors. The minimum required number of colors for the edges of a given graph is called the chromatic index of the graph. For example, the edges of the graph in the illustration can be colored by three colors but cannot be colored by two colors, so the graph shown has chromatic index three.

<span class="mw-page-title-main">Wheel graph</span> Cycle graph plus universal vertex

In the mathematical discipline of graph theory, a wheel graph is a graph formed by connecting a single universal vertex to all vertices of a cycle. A wheel graph with n vertices can also be defined as the 1-skeleton of an (n – 1)-gonal pyramid. Some authors write Wn to denote a wheel graph with n vertices ; other authors instead use Wn to denote a wheel graph with n + 1 vertices, which is formed by connecting a single vertex to all vertices of a cycle of length n. The rest of this article uses the former notation.

<span class="mw-page-title-main">Graph factorization</span>

In graph theory, a factor of a graph G is a spanning subgraph, i.e., a subgraph that has the same vertex set as G. A k-factor of a graph is a spanning k-regular subgraph, and a k-factorization partitions the edges of the graph into disjoint k-factors. A graph G is said to be k-factorable if it admits a k-factorization. In particular, a 1-factor is a perfect matching, and a 1-factorization of a k-regular graph is a proper edge coloring with k colors. A 2-factor is a collection of cycles that spans all vertices of the graph.

<span class="mw-page-title-main">Hoffman–Singleton graph</span> 7-regular undirected graph with 50 nodes and 175 edges

In the mathematical field of graph theory, the Hoffman–Singleton graph is a 7-regular undirected graph with 50 vertices and 175 edges. It is the unique strongly regular graph with parameters (50,7,0,1). It was constructed by Alan Hoffman and Robert Singleton while trying to classify all Moore graphs, and is the highest-order Moore graph known to exist. Since it is a Moore graph where each vertex has degree 7, and the girth is 5, it is a (7,5)-cage.

<span class="mw-page-title-main">Paley graph</span>

In mathematics, Paley graphs are dense undirected graphs constructed from the members of a suitable finite field by connecting pairs of elements that differ by a quadratic residue. The Paley graphs form an infinite family of conference graphs, which yield an infinite family of symmetric conference matrices. Paley graphs allow graph-theoretic tools to be applied to the number theory of quadratic residues, and have interesting properties that make them useful in graph theory more generally.

<span class="mw-page-title-main">Rado graph</span> Infinite graph containing all countable graphs

In the mathematical field of graph theory, the Rado graph, Erdős–Rényi graph, or random graph is a countably infinite graph that can be constructed by choosing independently at random for each pair of its vertices whether to connect the vertices by an edge. The names of this graph honor Richard Rado, Paul Erdős, and Alfréd Rényi, mathematicians who studied it in the early 1960s; it appears even earlier in the work of Wilhelm Ackermann (1937). The Rado graph can also be constructed non-randomly, by symmetrizing the membership relation of the hereditarily finite sets, by applying the BIT predicate to the binary representations of the natural numbers, or as an infinite Paley graph that has edges connecting pairs of prime numbers congruent to 1 mod 4 that are quadratic residues modulo each other.

<span class="mw-page-title-main">Handshaking lemma</span> Every graph has evenly many odd vertices

In graph theory, a branch of mathematics, the handshaking lemma is the statement that, in every finite undirected graph, the number of vertices that touch an odd number of edges is even. For example, if there is a party of people who shake hands, the number of people who shake an odd number of other people's hands is even. The handshaking lemma is a consequence of the degree sum formula, also sometimes called the handshaking lemma, according to which the sum of the degrees equals twice the number of edges in the graph. Both results were proven by Leonhard Euler (1736) in his famous paper on the Seven Bridges of Königsberg that began the study of graph theory.

The reconstruction conjecture of Stanisław Ulam is one of the best-known open problems in graph theory. Using the terminology of Frank Harary it can be stated as follows: If G and H are two graphs on at least three vertices and ƒ is a bijection from V(G) to V(H) such that G\{v} and H\{ƒ(v)} are isomorphic for all vertices v in V(G), then G and H are isomorphic.

<span class="mw-page-title-main">Directed graph</span> Graph with oriented edges

In mathematics, and more specifically in graph theory, a directed graph is a graph that is made up of a set of vertices connected by directed edges, often called arcs.

<span class="mw-page-title-main">Degeneracy (graph theory)</span> Measurement of graph sparsity

In graph theory, a k-degenerate graph is an undirected graph in which every subgraph has a vertex of degree at most k: that is, some vertex in the subgraph touches k or fewer of the subgraph's edges. The degeneracy of a graph is the smallest value of k for which it is k-degenerate. The degeneracy of a graph is a measure of how sparse it is, and is within a constant factor of other sparsity measures such as the arboricity of a graph.

In graph theory, a mathematical discipline, coloring refers to an assignment of colours or labels to vertices, edges and faces of a graph. Defective coloring is a variant of proper vertex coloring. In a proper vertex coloring, the vertices are coloured such that no adjacent vertices have the same colour. In defective coloring, on the other hand, vertices are allowed to have neighbours of the same colour to a certain extent.

<span class="mw-page-title-main">Italo Jose Dejter</span>

Italo Jose Dejter is an Argentine-born American mathematician, a retired professor of mathematics and computer science from the University of Puerto Rico, and a researcher in algebraic topology, differential topology, graph theory, coding theory and combinatorial designs. He obtained a Licentiate degree in mathematics from University of Buenos Aires in 1967, arrived at Rutgers University in 1970 by means of a Guggenheim Fellowship and obtained a Ph.D. degree in mathematics in 1975 under the supervision of Professor Ted Petrie, with support of the National Science Foundation. He was a professor at the Federal University of Santa Catarina, Brazil, from 1977 to 1984, with grants from the National Council for Scientific and Technological Development, (CNPq).

References

  1. Kelly, P. J., A congruence theorem for trees, Pacific J. Math.7 (1957), 961968.
  2. Ulam, S. M., A collection of mathematical problems, Wiley, New York, 1960.
  3. O'Neil, Peter V. (1970). "Ulam's conjecture and graph reconstructions". Amer. Math. Monthly. 77 (1): 35–43. doi:10.2307/2316851. JSTOR   2316851.
  4. 1 2 Harary, F., On the reconstruction of a graph from a collection of subgraphs. In Theory of Graphs and its Applications (Proc. Sympos. Smolenice, 1963). Publ. House Czechoslovak Acad. Sci., Prague, 1964, pp. 47–52.
  5. 1 2 3 4 5 Wall, Nicole. "The Reconstruction Conjecture" (PDF). Retrieved 2014-03-31.
  6. 1 2 von Rimscha, M.: Reconstructibility and perfect graphs. Discrete Mathematics47, 283–291 (1983)
  7. McKay, B. D., Small graphs are reconstructible, Australas. J. Combin.15 (1997), 123126.
  8. McKay, Brendan (2022). "Reconstruction of Small Graphs and Digraphs". Austras. J. Combin. 83: 448–457.
  9. Bollobás, B., Almost every graph has reconstruction number three, J. Graph Theory14 (1990), 14.
  10. 1 2 3 Harary, F. (1974), "A survey of the reconstruction conjecture", Graphs and Combinatorics, Lecture Notes in Mathematics, vol. 406, Springer, pp. 18–28, doi:10.1007/BFb0066431, ISBN   978-3-540-06854-9
  11. Bondy, J.-A. (1969). "On Ulam's conjecture for separable graphs". Pacific J. Math. 31 (2): 281–288. doi: 10.2140/pjm.1969.31.281 .
  12. Yang Yongzhi:The reconstruction conjecture is true if all 2-connected graphs are reconstructible. Journal of graph theory12, 237–243 (1988)
  13. Stockmeyer, P. K., The falsity of the reconstruction conjecture for tournaments, J. Graph Theory1 (1977), 1925.
  14. Stockmeyer, P. K., A census of non-reconstructable digraphs, I: six related families, J. Combin. Theory Ser. B31 (1981), 232239.
  15. Harary, F. and Palmer, E., On the problem of reconstructing a tournament from sub-tournaments, Monatsh. Math.71 (1967), 1423.
  16. Kocay, W. L., A family of nonreconstructible hypergraphs, J. Combin. Theory Ser. B42 (1987), 4663.
  17. Nash-Williams, C. St. J. A.; Hemminger, Robert (3 December 1991). "Reconstruction of infinite graphs" (PDF). Discrete Mathematics. 95 (1): 221–229. doi:10.1016/0012-365X(91)90338-3.
  18. Bowler, N., Erde, J., Heinig, P., Lehner, F. and Pitz, M. (2017), A counterexample to the reconstruction conjecture for locally finite trees. Bull. London Math. Soc.. doi : 10.1112/blms.12053
  19. Nash-Williams, C. St. J. A., The Reconstruction Problem, in Selected topics in graph theory, 205236 (1978).