Irreducible component

Last updated

In algebraic geometry, an irreducible algebraic set or irreducible variety is an algebraic set that cannot be written as the union of two proper algebraic subsets. An irreducible component of an algebraic set is an algebraic subset that is irreducible and maximal (for set inclusion) for this property. For example, the set of solutions of the equation xy = 0 is not irreducible, and its irreducible components are the two lines of equations x = 0 and y = 0.

Contents

It is a fundamental theorem of classical algebraic geometry that every algebraic set may be written in a unique way as a finite union of irreducible components.

These concepts can be reformulated in purely topological terms, using the Zariski topology, for which the closed sets are the algebraic subsets: A topological space is irreducible if it is not the union of two proper closed subsets, and an irreducible component is a maximal subspace (necessarily closed) that is irreducible for the induced topology. Although these concepts may be considered for every topological space, this is rarely done outside algebraic geometry, since most common topological spaces are Hausdorff spaces, and, in a Hausdorff space, the irreducible components are the singletons.

In topology

A topological space X is reducible if it can be written as a union of two closed proper subsets , of A topological space is irreducible (or hyperconnected ) if it is not reducible. Equivalently, X is irreducible if all non empty open subsets of X are dense, or if any two nonempty open sets have nonempty intersection.

A subset F of a topological space X is called irreducible or reducible, if F considered as a topological space via the subspace topology has the corresponding property in the above sense. That is, is reducible if it can be written as a union where are closed subsets of , neither of which contains

An irreducible component of a topological space is a maximal irreducible subset. If a subset is irreducible, its closure is also irreducible, so irreducible components are closed.

Every irreducible subset of a space X is contained in a (not necessarily unique) irreducible component of X. [1] Every point is contained in some irreducible component of X.

The empty topological space

The empty topological space vacuously satisfies the definition above for irreducible (since it has no proper subsets). However some authors, [2] especially those interested in applications to algebraic topology, explicitly exclude the empty set from being irreducible. This article will not follow that convention.

In algebraic geometry

Every affine or projective algebraic set is defined as the set of the zeros of an ideal in a polynomial ring. An irreducible algebraic set, more commonly known as an algebraic variety is an algebraic set that cannot be decomposed as the union of two smaller algebraic sets. Lasker–Noether theorem implies that every algebraic set is the union of a finite number of uniquely defined algebraic sets, called its irreducible components. These notions of irreducibility and irreducible components are exactly the above defined ones, when the Zariski topology is considered, since the algebraic sets are exactly the closed sets of this topology.

The spectrum of a ring is a topological space whose points are the prime ideals and the closed sets are the sets of all prime ideals that contain a fixed ideal. For this topology, a closed set is irreducible if it is the set of all prime ideals that contain some prime ideal, and the irreducible components correspond to minimal prime ideals. The number of irreducible components is finite in the case of a Noetherian ring.

A scheme is obtained by gluing together spectra of rings in the same way that a manifold is obtained by gluing together charts. So the definition of irreducibility and irreducible components extends immediately to schemes.

Examples

In a Hausdorff space, the irreducible subsets and the irreducible components are the singletons. This is the case, in particular, for the real numbers. In fact, if X is a set of real numbers that is not a singleton, there are three real numbers such that xX, yX, and x < a < y. The set X cannot be irreducible since

The notion of irreducible component is fundamental in algebraic geometry and rarely considered outside this area of mathematics: consider the algebraic subset of the plane

X = {(x, y) | xy = 0}.

For the Zariski topology, its closed subsets are itself, the empty set, the singletons, and the two lines defined by x = 0 and y = 0. The set X is thus reducible with these two lines as irreducible components.

The spectrum of a commutative ring is the set of the prime ideals of the ring, endowed with the Zariski topology, for which a set of prime ideals is closed if and only if it is the set of all prime ideals that contain a fixed ideal. In this case an irreducible subset is the set of all prime ideals that contain a fixed prime ideal.

Notes

  1. "Section 5.8 (004U): Irreducible components—The Stacks project".
  2. "Section 5.8 (004U): Irreducible components—The Stacks project".

This article incorporates material from irreducible on PlanetMath, which is licensed under the Creative Commons Attribution/Share-Alike License.This article incorporates material from Irreducible component on PlanetMath, which is licensed under the Creative Commons Attribution/Share-Alike License.

Related Research Articles

<span class="mw-page-title-main">Algebraic geometry</span> Branch of mathematics

Algebraic geometry is a branch of mathematics which uses abstract algebraic techniques, mainly from commutative algebra, to solve geometrical problems. Classically, it studies zeros of multivariate polynomials; the modern approach generalizes this in a few different aspects.

<span class="mw-page-title-main">Compact space</span> Type of mathematical space

In mathematics, specifically general topology, compactness is a property that seeks to generalize the notion of a closed and bounded subset of Euclidean space. The idea is that a compact space has no "punctures" or "missing endpoints", i.e., it includes all limiting values of points. For example, the open interval (0,1) would not be compact because it excludes the limiting values of 0 and 1, whereas the closed interval [0,1] would be compact. Similarly, the space of rational numbers is not compact, because it has infinitely many "punctures" corresponding to the irrational numbers, and the space of real numbers is not compact either, because it excludes the two limiting values and . However, the extended real number linewould be compact, since it contains both infinities. There are many ways to make this heuristic notion precise. These ways usually agree in a metric space, but may not be equivalent in other topological spaces.

In topology and related branches of mathematics, a Hausdorff space ( HOWSS-dorf, HOWZ-dorf), separated space or T2 space is a topological space where, for any two distinct points, there exist neighbourhoods of each that are disjoint from each other. Of the many separation axioms that can be imposed on a topological space, the "Hausdorff condition" (T2) is the most frequently used and discussed. It implies the uniqueness of limits of sequences, nets, and filters.

This is a glossary of some terms used in the branch of mathematics known as topology. Although there is no absolute distinction between different areas of topology, the focus here is on general topology. The following definitions are also fundamental to algebraic topology, differential topology and geometric topology.

In commutative algebra, the prime spectrum of a commutative ring R is the set of all prime ideals of R, and is usually denoted by ; in algebraic geometry it is simultaneously a topological space equipped with the sheaf of rings .

<span class="mw-page-title-main">Topological group</span> Group that is a topological space with continuous group action

In mathematics, topological groups are the combination of groups and topological spaces, i.e. they are groups and topological spaces at the same time, such that the continuity condition for the group operations connects these two structures together and consequently they are not independent from each other.

In topology and related branches of mathematics, a T1 space is a topological space in which, for every pair of distinct points, each has a neighborhood not containing the other point. An R0 space is one in which this holds for every pair of topologically distinguishable points. The properties T1 and R0 are examples of separation axioms.

<span class="mw-page-title-main">General topology</span> Branch of topology

In mathematics, general topology is the branch of topology that deals with the basic set-theoretic definitions and constructions used in topology. It is the foundation of most other branches of topology, including differential topology, geometric topology, and algebraic topology.

<span class="mw-page-title-main">Zariski topology</span> Topology on prime ideals and algebraic varieties

In algebraic geometry and commutative algebra, the Zariski topology is a topology that is primarily defined by its closed sets. It is very different from topologies that are commonly used in real or complex analysis; in particular, it is not Hausdorff. This topology was introduced primarily by Oscar Zariski and later generalized for making the set of prime ideals of a commutative ring a topological space.

<span class="mw-page-title-main">Algebraic variety</span> Mathematical object studied in the field of algebraic geometry

Algebraic varieties are the central objects of study in algebraic geometry, a sub-field of mathematics. Classically, an algebraic variety is defined as the set of solutions of a system of polynomial equations over the real or complex numbers. Modern definitions generalize this concept in several different ways, while attempting to preserve the geometric intuition behind the original definition.

<span class="mw-page-title-main">Affine variety</span> Algebraic variety defined within an affine space

In algebraic geometry, an affine algebraic set is the set of the common zeros over an algebraically closed field k of some family of polynomials in the polynomial ring An affine variety or affine algebraic variety, is an affine algebraic set such that the ideal generated by the defining polynomials is prime.

In mathematics, a scheme is a mathematical structure that enlarges the notion of algebraic variety in several ways, such as taking account of multiplicities and allowing "varieties" defined over any commutative ring.

In mathematics, a cofinite subset of a set is a subset whose complement in is a finite set. In other words, contains all but finitely many elements of If the complement is not finite, but is countable, then one says the set is cocountable.

In the branch of mathematics known as topology, the specialization (or canonical) preorder is a natural preorder on the set of the points of a topological space. For most spaces that are considered in practice, namely for all those that satisfy the T0 separation axiom, this preorder is even a partial order (called the specialization order). On the other hand, for T1 spaces the order becomes trivial and is of little interest.

In mathematics, a sober space is a topological space X such that every (nonempty) irreducible closed subset of X is the closure of exactly one point of X: that is, every irreducible closed subset has a unique generic point.

In mathematics, the spectrum of a C*-algebra or dual of a C*-algebraA, denoted Â, is the set of unitary equivalence classes of irreducible *-representations of A. A *-representation π of A on a Hilbert space H is irreducible if, and only if, there is no closed subspace K different from H and {0} which is invariant under all operators π(x) with xA. We implicitly assume that irreducible representation means non-null irreducible representation, thus excluding trivial (i.e. identically 0) representations on one-dimensional spaces. As explained below, the spectrum  is also naturally a topological space; this is similar to the notion of the spectrum of a ring.

In mathematics, a Noetherian topological space, named for Emmy Noether, is a topological space in which closed subsets satisfy the descending chain condition. Equivalently, we could say that the open subsets satisfy the ascending chain condition, since they are the complements of the closed subsets. The Noetherian property of a topological space can also be seen as a strong compactness condition, namely that every open subset of such a space is compact, and in fact it is equivalent to the seemingly stronger statement that every subset is compact.

In algebraic geometry, a generic pointP of an algebraic variety X is a point in a general position, at which all generic properties are true, a generic property being a property which is true for almost every point.

In the mathematical field of topology, a hyperconnected space or irreducible space is a topological space X that cannot be written as the union of two proper closed subsets. The name irreducible space is preferred in algebraic geometry.

This is a glossary of algebraic geometry.