John Reif

Last updated

John H. Reif (born 1951) is an American academic, and Professor of Computer Science at Duke University, who has made contributions to large number of fields in computer science: ranging from algorithms and computational complexity theory to robotics. He has also published in many other scientific fields including chemistry (in particular, nanoscience), optics (in particular optical computing and design of head-mounted displays), and mathematics (in particular graph theory and game theory.

Contents

Biography

John Reif received a B.S. (magna cum laude) from Tufts University in 1973, a M.S. from Harvard University in 1975 and a Ph.D. from Harvard University in 1977. [1]

From 1983 to 1986 he was associate professor of Harvard University, and since 1986 he has been Professor of Computer Science at Duke University. Currently he holds the Hollis Edens Distinguished Professor, Trinity College of Arts and Sciences, Duke University. From 2011 to 2014 he was Distinguished Adjunct Professor, Faculty of Computing and Information Technology (FCIT), King Abdulaziz University (KAU), Jeddah, Saudi Arabia.

He has also contributed to bringing together various disjoint research communities working in different areas of nano-sciences by organizing (as General Chairman) annual Conferences on "Foundations of Nanoscience: Self-assembled architectures and devices" (FNANO [2] ) for last 20 years.

He has been awarded Fellow of the following organizations: American Association for the Advancement of Science, IEEE, ACM, and the Institute of Combinatorics.

He is the son of Arnold E. Reif and like him he has dual citizenship in USA and Austria.

Research contributions

John Reif has made contributions to large number of fields in computer science: ranging from algorithms and computational complexity theory to robotics and to game theory. He developed efficient randomized algorithms and parallel algorithms for a wide variety of graph, geometric, numeric, algebraic, and logical problems. His Google Scholar H-index [3] is 76.

In the area of robotics, he gave the first hardness proofs for robotic motion planning as well as efficient algorithms for a wide variety of motion planning problems.

He also has led applied research projects: parallel programming languages (Proteus System for parallel programming), parallel architectures (Blitzen, a massively parallel machine), data compression (massively parallel loss-less compression hardware), and optical computing (free-space holographic routing). His papers on these topics can be downloaded here.

John Reif is President of Eagle Eye Research, Inc., [4] which specializes in defense applications of DNA biotechnology.

He is co-founder of the company Domus Diagnostics, Inc. which developed a highly accurate and affordable at-home molecular testing platform for various diseases, including COVID-19, RSV, and influenza A and B.

Research in nanoscience

More recently, he has centered his research in nanoscience and in particular DNA nanotechnology, DNA computing, and DNA nanorobotics. In the last dozen years his group at Duke has designed and experimentally demonstrated in the lab a variety of novel self-assembled DNA nanostructures and DNA lattices, including the first experimental demonstrations of molecular scale computation and patterning using DNA assembly. His group also experimentally demonstrated various molecular robotic devices composed of DNA, including one of the first autonomous unidirectional DNA walker that walked on a DNA track. He also has done significant work on controlling errors in self-assembly and the stochastic analysis of self-assembly. [5]

See also

Publications

He is the author of over 200 publications. [6] A selection:

Books

Related Research Articles

<span class="mw-page-title-main">Ron Rivest</span> American cryptographer

Ronald Linn Rivest is a cryptographer and computer scientist whose work has spanned the fields of algorithms and combinatorics, cryptography, machine learning, and election integrity. He is an Institute Professor at the Massachusetts Institute of Technology (MIT), and a member of MIT's Department of Electrical Engineering and Computer Science and its Computer Science and Artificial Intelligence Laboratory.

<span class="mw-page-title-main">DNA computing</span> Computing using molecular biology hardware

DNA computing is an emerging branch of unconventional computing which uses DNA, biochemistry, and molecular biology hardware, instead of the traditional electronic computing. Research and development in this area concerns theory, experiments, and applications of DNA computing. Although the field originally started with the demonstration of a computing application by Len Adleman in 1994, it has now been expanded to several other avenues such as the development of storage technologies, nanoscale imaging modalities, synthetic controllers and reaction networks, etc.

Theoretical computer science (TCS) is a subset of general computer science and mathematics that focuses on mathematical aspects of computer science such as the theory of computation (TOC), formal language theory, the lambda calculus and type theory.

<span class="mw-page-title-main">DNA origami</span> Folding of DNA to create two- and three-dimensional shapes at the nanoscale

DNA origami is the nanoscale folding of DNA to create arbitrary two- and three-dimensional shapes at the nanoscale. The specificity of the interactions between complementary base pairs make DNA a useful construction material, through design of its base sequences. DNA is a well-understood material that is suitable for creating scaffolds that hold other molecules in place or to create structures all on its own.

<span class="mw-page-title-main">Randal Bryant</span> American computer scientist (born 1952)

Randal E. Bryant is an American computer scientist and academic noted for his research on formally verifying digital hardware and software. Bryant has been a faculty member at Carnegie Mellon University since 1984. He served as the Dean of the School of Computer Science (SCS) at Carnegie Mellon from 2004 to 2014. Dr. Bryant retired and became a Founders University Professor Emeritus on June 30, 2020.

<span class="mw-page-title-main">Kurt Mehlhorn</span> German computer scientist (born 1949)

Kurt Mehlhorn is a German theoretical computer scientist. He has been a vice president of the Max Planck Society and is director of the Max Planck Institute for Computer Science.

<i>Information Processing Letters</i> Academic journal

Information Processing Letters is a peer-reviewed scientific journal in the field of computer science, published by Elsevier. The aim of the journal is to enable fast dissemination of results in the field of information processing in the form of short papers. Submissions are limited to nine double-spaced pages.

Natural computing, also called natural computation, is a terminology introduced to encompass three classes of methods: 1) those that take inspiration from nature for the development of novel problem-solving techniques; 2) those that are based on the use of computers to synthesize natural phenomena; and 3) those that employ natural materials to compute. The main fields of research that compose these three branches are artificial neural networks, evolutionary algorithms, swarm intelligence, artificial immune systems, fractal geometry, artificial life, DNA computing, and quantum computing, among others.

<span class="mw-page-title-main">Nadrian Seeman</span> American physicist (1945–2021)

Nadrian C. "Ned" Seeman was an American nanotechnologist and crystallographer known for inventing the field of DNA nanotechnology.

<span class="mw-page-title-main">Bruce Donald</span> American computer scientist and computational biologist

Bruce Randall Donald is an American computer scientist and computational biologist. He is the James B. Duke Professor of Computer Science and Biochemistry at Duke University. He has made numerous contributions to several fields in Computer Science such as robotics, Microelectromechanical Systems (MEMS), Geometric & physical algorithms and computational geometry, as well as in areas of Structural Molecular Biology & Biochemistry such as Protein design, Protein Structure Determination and Computational Chemistry.

<span class="mw-page-title-main">Pavel A. Pevzner</span> Russian-born American professor of computational mass spectrometry

Pavel Arkadevich Pevzner is the Ronald R. Taylor Professor of Computer Science and director of the NIH Center for Computational Mass Spectrometry at University of California, San Diego. He serves on the editorial board of PLoS Computational Biology and he is a member of the Genome Institute of Singapore scientific advisory board.

<span class="mw-page-title-main">Enrique Alba</span> Spanish computer science professor (born 1968)

Enrique Alba is a professor of computer science at the University of Málaga, Spain.

The International Society for Nanoscale Science, Computation, and Engineering is a scientific society specializing in nanotechnology and DNA computing. It was started in 2004 by Nadrian Seeman, founder of the field of DNA nanotechnology. According to the society, its purpose is "to promote the study of the control of the arrangement of the atoms in matter, examine the principles that lead to such control, to develop tools and methods to increase such control, and to investigate the use of these principles for molecular computation, and for engineering on the finest possible scales."

Thomas (Thom) Henry LaBean is an American biochemist, bioengineer and professor at North Carolina State University. He was previously a research professor at Duke University. He is a leading researcher in the field of DNA nanotechnology.

<span class="mw-page-title-main">Albert Zomaya</span> Computer engineer

Albert Y. Zomaya is currently the Chair Professor of High Performance Computing & Networking and Australian Research Council Professorial Fellow in the School of Information Technologies, The University of Sydney. He is also the Director of the Centre for Distributed and High Performance Computing. He is currently the Editor in Chief of IEEE Transactions on Sustainable Computing and Springer's Scalable Computing and Communications. He was past Editor in Chief of the IEEE Transactions on Computers.

A DNA walker is a class of nucleic acid nanomachines where a nucleic acid "walker" is able to move along a nucleic acid "track". The concept of a DNA walker was first defined and named by John H. Reif in 2003. A nonautonomous DNA walker requires external changes for each step, whereas an autonomous DNA walker progresses without any external changes. Various nonautonomous DNA walkers were developed, for example Shin controlled the motion of DNA walker by using 'control strands' which needed to be manually added in a specific order according to the template's sequence in order to get the desired path of motion. In 2004 the first autonomous DNA walker, which did not require external changes for each step, was experimentally demonstrated by the Reif group.

Jacek Antoni Błażewicz is a Polish computer scientist specializing in the theory of algorithms and bioinformatics. He has been working as Director of the Institute of Computer Sciences of the Poznań University of Technology. He is also Head of the Department of Bioinformatics at the Institute of Bioorganic Chemistry of the Polish Academy of Sciences.

Hao Yan is a Chinese-American chemist, a (bio)molecular designer, programmer and engineer.

<span class="mw-page-title-main">Lyle Norman Long</span> Academic and computational scientist

Lyle Norman Long is an academic, and computational scientist. He is a Professor Emeritus of Computational Science, Mathematics, and Engineering at The Pennsylvania State University, and is most known for developing algorithms and software for mathematical models, including neural networks, and robotics. His research has been focused in the fields of computational science, computational neuroscience, cognitive robotics, parallel computing, and software engineering.

References