Kepler-65

Last updated
Kepler-65
Observation data
Epoch J2000       Equinox J2000
Constellation Lyra
Right ascension 19h 14m 45.2916s [1]
Declination +41° 09 04.210 [1]
Apparent magnitude  (V)11.018
Characteristics
Evolutionary stage Subgiant
Spectral type F6IV
Astrometry
Proper motion (μ)RA: 1.256(14)  mas/yr [1]
Dec.: −14.388(12)  mas/yr [1]
Parallax (π)3.3184 ± 0.0108  mas [1]
Distance 983 ± 3  ly
(301.4 ± 1.0  pc)
Details
Mass 1.25  M
Radius 1.41  R
Temperature 6211  K
Metallicity [Fe/H]+0.17  dex
Rotation 7.911±0.155 days [2]
Other designations
KOI-85, KIC  5866724, TYC  3125-976-1, GSC  03125-00976, 2MASS J19144528+4109042 [3]
Database references
SIMBAD data
KIC data

Kepler-65 is a subgiant star slightly more massive than the Sun and has at least four planets.

Contents

Planetary system

Three transiting planets were announced in 2013. A fourth non-transiting planet was discovered using radial velocity measurements in 2019. [4] The first three planets orbit very close to their star. Initial follow-up radial velocity measurements provided data too noisy to constrain the mass of planets. [5] Follow-up transit-timing variation analysis helped to measure the mass of Kepler-65d which revealed that it has significantly lower density than Earth. [6]

The Kepler-65 planetary system [4]
Companion
(in order from star)
Mass Semimajor axis
(AU)
Orbital period
(days)
Eccentricity Inclination Radius
b2.4+2.4
−1.6
  M🜨
0.0352.1549209+0.0000086
−0.0000074
0.028+0.031
−0.02
92.2+1.3
−1.4
°
1.444+0.037
−0.031
  R🜨
c5.4±1.7  M🜨 0.0685.859697+0.000093
−0.000099
0.02+0.022
−0.013
92.33+0.29
−0.26
°
2.623+0.066
−0.056
  R🜨
d4.14+0.79
−0.80
  M🜨
0.0848.13167+0.00024
−0.00021
0.014+0.016
−0.010
92.35+0.18
−0.16
°
1.587+0.040
−0.035
  R🜨
e200+200
−50
  M🜨
258.8+1.5
−1.3
0.283+0.064
−0.071
127.0+27.0
−25.0
°

Related Research Articles

HD 147506, also known as HAT-P-2 and formally named Hunor, is a magnitude 8.7 F8 dwarf star that is somewhat larger and hotter than the Sun. The star is approximately 419 light-years from Earth and is positioned near the keystone of Hercules. It is estimated to be 2 to 3 billion years old, towards the end of its main sequence life. There is one known transiting exoplanet, and a second planet not observed to transit.

<span class="mw-page-title-main">Kepler-9</span> Star located in the constellation Lyra

Kepler-9 is a sunlike star in the constellation Lyra. Its planetary system, discovered by the Kepler Mission in 2010 was the first detected with the transit method found to contain multiple planets.

Kepler-17 is a main-sequence yellow dwarf star that is much more active than the Sun with starspots covering roughly 6% of its surface. Starspots are long-lived, with at least one persisting for 1400 days.

Kepler-39 is an F-type main sequence star located in the constellation Cygnus. It is located about 3,560 light-years away. One known substellar companion orbits it, Kepler-39b.

Kepler-18 is a star with almost the same mass as the Sun in the Cygnus constellation.

HAT-P-17 is a K-type main-sequence star about 92.4 parsecs (301 ly) away. It has a mass of about 0.857 ± 0.039 M. It is the host of two planets, HAT-P-17b and HAT-P-17c, both discovered in 2010. A search for a binary companion star using adaptive optics at the MMT Observatory was negative. A candidate companion was detected by a spectroscopic search of high-resolution K band infrared spectra taken at the Keck observatory.

Kepler-80, also known as KOI-500, is a red dwarf star of the spectral type M0V. This stellar classification places Kepler-80 among the very common, cool, class M stars that are still within their main evolutionary stage, known as the main sequence. Kepler-80, like other red dwarf stars, is smaller than the Sun, and it has both radius, mass, temperatures, and luminosity lower than that of our own star. Kepler-80 is found approximately 1,223 light years from the Solar System, in the stellar constellation Cygnus, also known as the Swan.

Kepler-68 is a Sun-like main sequence star located 471 light-years away in the constellation Cygnus. It is known to have at least four planets orbiting around it. The third planet has a mass similar to Jupiter but orbits within the habitable zone.

Kepler-68d is a gas giant with the minimum mass about the same as Jupiter. It is at least a jovian-mass planet orbiting 1.4 astronomical units from its parent star, Kepler-68, well within habitable zone of the star. It was detected by radial velocity.

Kepler-32 is an M-type main sequence star located about 1070 light years from Earth, in the constellation of Cygnus. Discovered in January 2012 by the Kepler spacecraft, it shows a 0.58 ± 0.05 solar mass (M), a 0.53 ± 0.04 solar radius (R), and temperature of 3900.0 K, making it half the mass and radius of the Sun, two-thirds its temperature and 5% its luminosity.

Kepler-89 is a star with four confirmed planets. Kepler-89 is a possible wide binary star.

Kepler-88 is a G-type star 1,230 light-years away in the constellation of Lyra, with three confirmed exoplanets. SIMBAD lists a subgiant spectral type of G8IV, while other sources give it a main sequence spectral type of G6V. The latter is more consistent with its properties.

<span class="mw-page-title-main">Kepler-25</span> Yellow-white hued star in the constellation Lyra

Kepler-25 is a star in the northern constellation of Lyra. It is slightly larger and more massive than the Sun, with a luminosity 212 times that of the Sun. With an apparent visual magnitude of 10.6, this star is too faint to be seen with the naked eye.

<span class="mw-page-title-main">Kepler-26</span> Star in the constellation Lyra

Kepler-26 is a star in the northern constellation of Lyra. It is located at the celestial coordinates: Right Ascension 18h 59m 45.8407s Declination +46° 33′ 59.438″. With an apparent visual magnitude of 15.5, this star is too faint to be seen with the naked eye.

Kepler-102 is a star 353 light-years away in the constellation of Lyra. Kepler-102 is less luminous than the Sun. The star system does not contain any observable amount of dust. Kepler-102 is suspected to be orbited by a binary consisting of two red dwarf stars, at projected separations of 591 and 627 AU.

<span class="mw-page-title-main">Kepler-138</span> Red dwarf in the constellation Lyra

Kepler-138, also known as KOI-314, is a red dwarf located in the constellation Lyra, 219 light years from Earth. It is located within the field of vision of the Kepler spacecraft, the satellite that NASA's Kepler Mission used to detect planets transiting their stars.

Kepler-43, formerly known as KOI-135, is a star in the northern constellation of Cygnus. It is located at the celestial coordinates: Right Ascension 19h 00m 57.8034s, Declination +46° 40′ 05.665″. With an apparent visual magnitude of 13.996, this star is too faint to be seen with the naked eye. The Kepler-43 has a very strong starspot activity.

Kepler-419 is an F-type main-sequence star located about 3,280 light years from Earth in the constellation Cygnus. It is located within the field of vision of the Kepler spacecraft, the satellite that NASA's Kepler Mission used to detect planets that may be transiting their stars. In 2012, a potential planetary companion in a very eccentric orbit was detected around this star, but its planetary nature was not confirmed until 12 June 2014, when it was named Kepler-419b. A second planet was announced orbiting further out from the star in the same paper, named Kepler-419c.

Kepler-13 or KOI-13 is a stellar triple star system consisting of Kepler-13A, around which an orbiting hot Jupiter exoplanet was discovered with the Kepler spacecraft in 2011, and Kepler-13B a common proper motion companion star which has an additional star orbiting it.

References

  1. 1 2 3 4 5 Vallenari, A.; et al. (Gaia collaboration) (2023). "Gaia Data Release 3. Summary of the content and survey properties". Astronomy and Astrophysics. 674: A1. arXiv: 2208.00211 . Bibcode:2023A&A...674A...1G. doi: 10.1051/0004-6361/202243940 . S2CID   244398875. Gaia DR3 record for this source at VizieR.
  2. McQuillan, A.; Mazeh, T.; Aigrain, S. (2013). "Stellar Rotation Periods of The Kepler objects of Interest: A Dearth of Close-In Planets Around Fast Rotators". The Astrophysical Journal Letters. 775 (1). L11. arXiv: 1308.1845 . Bibcode: 2013ApJ...775L..11M . doi: 10.1088/2041-8205/775/1/L11 .
  3. "Kepler-65". SIMBAD . Centre de données astronomiques de Strasbourg . Retrieved 10 January 2017.
  4. 1 2 Mills, Sean M.; et al. (2019). "Long-period Giant Companions to Three Compact, Multiplanet Systems". The Astronomical Journal. 157 (4). 145. arXiv: 1903.07186 . Bibcode:2019AJ....157..145M. doi: 10.3847/1538-3881/ab0899 . S2CID   119197547.
  5. Chaplin, W. J.; et al. (2013). "Asteroseismic Determination of Obliquities of the Exoplanet Systems Kepler-50 and Kepler-65". The Astrophysical Journal. 766 (2). 101. arXiv: 1302.3728 . Bibcode: 2013ApJ...766..101C . doi: 10.1088/0004-637X/766/2/101 .
  6. Hadden, Sam; Lithwick, Yoram (2014). "Densities and Eccentricities of 139 Kepler Planets from Transit Time Variations". The Astrophysical Journal. 787 (1). 80. arXiv: 1310.7942 . Bibcode: 2014ApJ...787...80H . doi: 10.1088/0004-637X/787/1/80 .