Liber Abaci

Last updated
A page of the Liber Abaci
from the National Central Library. The list on the right shows the numbers 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377 (the Fibonacci sequence). The 2, 8, and 9 resemble Arabic numerals more than Eastern Arabic numerals or Indian numerals. Liber abbaci magliab f124r.jpg
A page of the Liber Abaci from the National Central Library. The list on the right shows the numbers 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377 (the Fibonacci sequence). The 2, 8, and 9 resemble Arabic numerals more than Eastern Arabic numerals or Indian numerals.

The Liber Abaci or Liber Abbaci [1] (Latin for "The Book of Calculation") was a 1202 Latin work on arithmetic by Leonardo of Pisa, posthumously known as Fibonacci. It is primarily famous for helping popularize Arabic numerals in Europe.

Contents

Premise

Liber Abaci was among the first Western books to describe the Hindu–Arabic numeral system and to use symbols resembling modern "Arabic numerals". By addressing the applications of both commercial tradesmen and mathematicians, it promoted the superiority of the system, and the use of these glyphs. [2]

Although the book's title is sometimes translated as "The Book of the Abacus", Sigler (2002) notes that it is an error to read this as referring to calculating devices called "abacus". Rather, the word "abacus" was used at the time to refer to calculation in any form; the spelling "abbacus" with two "b"s (which is how Leonardo spelled it in the original Latin manuscript) was, and still is in Italy, used to refer to calculation using Hindu-Arabic numerals, which can avoid confusion. The book describes methods of doing calculations without aid of an abacus, and as Ore (1948) confirms, for centuries after its publication the algorismists (followers of the style of calculation demonstrated in Liber Abaci) remained in conflict with the abacists (traditionalists who continued to use the abacus in conjunction with Roman numerals). The historian of mathematics Carl Boyer emphasizes in his History of Mathematics that although "Liber abaci...is not on the abacus" per se , nevertheless "...it is a very thorough treatise on algebraic methods and problems in which the use of the Hindu-Arabic numerals is strongly advocated." [3]

Summary of sections

The first section introduces the Hindu–Arabic numeral system, including methods for converting between different representation systems. This section also includes the first known description of trial division for testing whether a number is composite and, if so, factoring it. [4]

The second section presents examples from commerce, such as conversions of currency and measurements, and calculations of profit and interest.[ citation needed ]

The third section discusses a number of mathematical problems; for instance, it includes (ch. II.12) the Chinese remainder theorem, perfect numbers and Mersenne primes as well as formulas for arithmetic series and for square pyramidal numbers. Another example in this chapter involves the growth of a population of rabbits, where the solution requires generating a numerical sequence. Although the problem dates back long before Leonardo, its inclusion in his book is why the Fibonacci sequence is named after him today.[ citation needed ]

The fourth section derives approximations, both numerical and geometrical, of irrational numbers such as square roots.[ citation needed ]

The book also includes proofs in Euclidean geometry. Fibonacci's method of solving algebraic equations shows the influence of the early 10th-century Egyptian mathematician Abū Kāmil Shujāʿ ibn Aslam. [5]

Fibonacci's notation for fractions

In reading Liber Abaci, it is helpful to understand Fibonacci's notation for rational numbers, a notation that is intermediate in form between the Egyptian fractions commonly used until that time and the vulgar fractions still in use today. [6]

Fibonacci's notation differs from modern fraction notation in three key ways:[ citation needed ]

  1. Modern notation generally writes a fraction to the right of the whole number to which it is added, for instance for 7/3. Fibonacci instead would write the same fraction to the left, i.e., .[ citation needed ]
  2. Fibonacci used a composite fraction notation in which a sequence of numerators and denominators shared the same fraction bar; each such term represented an additional fraction of the given numerator divided by the product of all the denominators below and to the right of it. That is, , and . The notation was read from right to left. For example, 29/30 could be written as , representing the value . This can be viewed as a form of mixed radix notation, and was very convenient for dealing with traditional systems of weights, measures, and currency. For instance, for units of length, a foot is 1/3 of a yard, and an inch is 1/12 of a foot, so a quantity of 5 yards, 2 feet, and inches could be represented as a composite fraction: yards. However, typical notations for traditional measures, while similarly based on mixed radixes, do not write out the denominators explicitly; the explicit denominators in Fibonacci's notation allow him to use different radixes for different problems when convenient. Sigler also points out an instance where Fibonacci uses composite fractions in which all denominators are 10, prefiguring modern decimal notation for fractions.[ citation needed ]
  3. Fibonacci sometimes wrote several fractions next to each other, representing a sum of the given fractions. For instance, 1/3+1/4 = 7/12, so a notation like would represent the number that would now more commonly be written as the mixed number , or simply the improper fraction . Notation of this form can be distinguished from sequences of numerators and denominators sharing a fraction bar by the visible break in the bar. If all numerators are 1 in a fraction written in this form, and all denominators are different from each other, the result is an Egyptian fraction representation of the number. This notation was also sometimes combined with the composite fraction notation: two composite fractions written next to each other would represent the sum of the fractions.[ citation needed ]

The complexity of this notation allows numbers to be written in many different ways, and Fibonacci described several methods for converting from one style of representation to another. In particular, chapter II.7 contains a list of methods for converting an improper fraction to an Egyptian fraction, including the greedy algorithm for Egyptian fractions, also known as the Fibonacci–Sylvester expansion.[ citation needed ]

Modus Indorum

In the Liber Abaci, Fibonacci says the following introducing the affirmative Modus Indorum (the method of the Indians), today known as Hindu–Arabic numeral system or base-10 positional notation. It also introduced digits that greatly resembled the modern Arabic numerals.[ citation needed ]

As my father was a public official away from our homeland in the Bugia customshouse established for the Pisan merchants who frequently gathered there, he had me in my youth brought to him, looking to find for me a useful and comfortable future; there he wanted me to be in the study of mathematics and to be taught for some days. There from a marvelous instruction in the art of the nine Indian figures, the introduction and knowledge of the art pleased me so much above all else, and I learnt from them, whoever was learned in it, from nearby Egypt, Syria, Greece, Sicily and Provence, and their various methods, to which locations of business I travelled considerably afterwards for much study, and I learnt from the assembled disputations. But this, on the whole, the algorithm and even the Pythagorean arcs, I still reckoned almost an error compared to the Indian method. Therefore strictly embracing the Indian method, and attentive to the study of it, from mine own sense adding some, and some more still from the subtle Euclidean geometric art, applying the sum that I was able to perceive to this book, I worked to put it together in xv distinct chapters, showing certain proof for almost everything that I put in, so that further, this method perfected above the rest, this science is instructed to the eager, and to the Italian people above all others, who up to now are found without a minimum. If, by chance, something less or more proper or necessary I omitted, your indulgence for me is entreated, as there is no one who is without fault, and in all things is altogether circumspect.[ citation needed ]
The nine Indian figures are:
9 8 7 6 5 4 3 2 1
With these nine figures, and with the sign 0 which the Arabs call zephir any number whatsoever is written... [7]

In other words, in his book he advocated the use of the digits 0–9, and of place value. Until this time Europe used Roman numerals, making modern mathematics almost impossible. The book thus made an important contribution to the spread of decimal numerals. The spread of the Hindu-Arabic system, however, as Ore writes, was "long-drawn-out", taking many more centuries to spread widely, and did not become complete until the later part of the 16th century, accelerating dramatically only in the 1500s with the advent of printing.[ citation needed ]

Textual history

The first appearance of the manuscript was in 1202. No copies of this version are known. A revised version of Liber Abaci, dedicated to Michael Scot, appeared in 1227 CE. [8] [9] There are at least nineteen manuscripts extant containing parts of this text. [10] There are three complete versions of this manuscript from the thirteenth and fourteenth centuries. [11] There are a further nine incomplete copies known between the thirteenth and fifteenth centuries, and there may be more not yet identified. [11] [10]

There was no known printed version of Liber Abaci until Boncompagni's Italian translation of 1857. [10] The first complete English translation was Sigler's text of 2002. [10]

Related Research Articles

The ten Arabic numerals 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9 are the most commonly used symbols for writing numbers. The term often also implies a positional notation using the numerals, as well as the use of a decimal base, in particular when contrasted with other systems such as Roman numerals. However, the symbols are also used to write numbers in other bases such as octal, as well as for writing non-numerical information such as trademarks or license plate identifiers.

<span class="mw-page-title-main">Arithmetic</span> Branch of elementary mathematics

Arithmetic is an elementary branch of mathematics that studies numerical operations like addition, subtraction, multiplication, and division. In a wider sense, it also includes exponentiation, extraction of roots, and taking logarithms.

<span class="mw-page-title-main">Fibonacci</span> Italian mathematician (c. 1170–1245)

Fibonacci, also known as Leonardo Bonacci, Leonardo of Pisa, or Leonardo Bigollo Pisano, was an Italian mathematician from the Republic of Pisa, considered to be "the most talented Western mathematician of the Middle Ages".

<span class="mw-page-title-main">Number</span> Used to count, measure, and label

A number is a mathematical object used to count, measure, and label. The most basic examples are the natural numbers 1, 2, 3, 4, and so forth. Numbers can be represented in language with number words. More universally, individual numbers can be represented by symbols, called numerals; for example, "5" is a numeral that represents the number five. As only a relatively small number of symbols can be memorized, basic numerals are commonly organized in a numeral system, which is an organized way to represent any number. The most common numeral system is the Hindu–Arabic numeral system, which allows for the representation of any non-negative integer using a combination of ten fundamental numeric symbols, called digits. In addition to their use in counting and measuring, numerals are often used for labels, for ordering, and for codes. In common usage, a numeral is not clearly distinguished from the number that it represents.

0 (zero) is a number representing an empty quantity. Adding 0 to any number leaves that number unchanged. In mathematical terminology, 0 is the additive identity of the integers, rational numbers, real numbers, and complex numbers, as well as other algebraic structures. Multiplying any number by 0 has the result 0, and consequently, division by zero has no meaning in arithmetic.

A numerical digit or numeral is a single symbol used alone or in combinations, to represent numbers in a positional numeral system. The name "digit" comes from the fact that the ten digits of the hands correspond to the ten symbols of the common base 10 numeral system, i.e. the decimal digits.

<span class="mw-page-title-main">Egyptian fraction</span> Finite sum of distinct unit fractions

An Egyptian fraction is a finite sum of distinct unit fractions, such as

<span class="mw-page-title-main">Algorism</span> Mathematical technique for arithmetic

Algorism is the technique of performing basic arithmetic by writing numbers in place value form and applying a set of memorized rules and facts to the digits. One who practices algorism is known as an algorist. This positional notation system has largely superseded earlier calculation systems that used a different set of symbols for each numerical magnitude, such as Roman numerals, and in some cases required a device such as an abacus.

<span class="mw-page-title-main">Unit fraction</span> One over a whole number

A unit fraction is a positive fraction with one as its numerator, 1/n. It is the multiplicative inverse (reciprocal) of the denominator of the fraction, which must be a positive natural number. Examples are 1/1, 1/2, 1/3, 1/4, 1/5, etc. When an object is divided into equal parts, each part is a unit fraction of the whole.

<span class="mw-page-title-main">Practical number</span> Number such that it and all smaller numbers may be represented as sums of its distinct divisors

In number theory, a practical number or panarithmic number is a positive integer such that all smaller positive integers can be represented as sums of distinct divisors of . For example, 12 is a practical number because all the numbers from 1 to 11 can be expressed as sums of its divisors 1, 2, 3, 4, and 6: as well as these divisors themselves, we have 5 = 3 + 2, 7 = 6 + 1, 8 = 6 + 2, 9 = 6 + 3, 10 = 6 + 3 + 1, and 11 = 6 + 3 + 2.

<span class="mw-page-title-main">Fraction</span> Ratio of two numbers

A fraction represents a part of a whole or, more generally, any number of equal parts. When spoken in everyday English, a fraction describes how many parts of a certain size there are, for example, one-half, eight-fifths, three-quarters. A common, vulgar, or simple fraction consists of an integer numerator, displayed above a line, and a non-zero integer denominator, displayed below that line. If these integers are positive, then the numerator represents a number of equal parts, and the denominator indicates how many of those parts make up a unit or a whole. For example, in the fraction 3/4, the numerator 3 indicates that the fraction represents 3 equal parts, and the denominator 4 indicates that 4 parts make up a whole. The picture to the right illustrates 3/4 of a cake.

Lattice multiplication, also known as the Italian method, Chinese method, Chinese lattice, gelosia multiplication, sieve multiplication, shabakh, diagonally or Venetian squares, is a method of multiplication that uses a lattice to multiply two multi-digit numbers. It is mathematically identical to the more commonly used long multiplication algorithm, but it breaks the process into smaller steps, which some practitioners find easier to use.

The Erdős–Straus conjecture is an unproven statement in number theory. The conjecture is that, for every integer that is 2 or more, there exist positive integers , , and for which

<span class="mw-page-title-main">Hindu–Arabic numeral system</span> Most common system for writing numbers

The Hindu–Arabic numeral system is a positional base ten numeral system for representing integers; its extension to non-integers is the decimal numeral system, which is presently the most common numeral system.

In mathematics, the greedy algorithm for Egyptian fractions is a greedy algorithm, first described by Fibonacci, for transforming rational numbers into Egyptian fractions. An Egyptian fraction is a representation of an irreducible fraction as a sum of distinct unit fractions, such as 5/6 = 1/2 + 1/3. As the name indicates, these representations have been used as long ago as ancient Egypt, but the first published systematic method for constructing such expansions was described in 1202 in the Liber Abaci of Leonardo of Pisa (Fibonacci). It is called a greedy algorithm because at each step the algorithm chooses greedily the largest possible unit fraction that can be used in any representation of the remaining fraction.

<span class="mw-page-title-main">Rod calculus</span>

Rod calculus or rod calculation was the mechanical method of algorithmic computation with counting rods in China from the Warring States to Ming dynasty before the counting rods were increasingly replaced by the more convenient and faster abacus. Rod calculus played a key role in the development of Chinese mathematics to its height in Song Dynasty and Yuan Dynasty, culminating in the invention of polynomial equations of up to four unknowns in the work of Zhu Shijie.

Abacus school is a term applied to any Italian school or tutorial after the 13th century, whose commerce-directed curriculum placed special emphasis on mathematics, such as algebra, among other subjects. These schools sprang up after the publication of Fibonacci's Book of the Abacus and his introduction of the Hindu–Arabic numeral system. In Fibonacci's viewpoint, this system, originating in India around 400 BCE, and later adopted by the Arabs, was simpler and more practical than using the existing Roman numeric tradition. Italian merchants and traders quickly adopted the structure as a means of producing accountants, clerks, and so on, and subsequently abacus schools for students were established. These were done in many ways: communes could appeal to patrons to support the institution and find masters; religious institutions could finance and oversee the curriculum; independent masters could teach pupils. Unless they were selected for teaching occupations that were salaried, most masters taught students who could pay as this was their main source of income.

A timeline of numerals and arithmetic.

This is a timeline of pure and applied mathematics history. It is divided here into three stages, corresponding to stages in the development of mathematical notation: a "rhetorical" stage in which calculations are described purely by words, a "syncopated" stage in which quantities and common algebraic operations are beginning to be represented by symbolic abbreviations, and finally a "symbolic" stage, in which comprehensive notational systems for formulas are the norm.

Al-Hassar or Abu Bakr Muhammad ibn Abdallah ibn Ayyash al-Hassar was a 12th-century Moroccan mathematician. He is the author of two books Kitab al-bayan wat-tadhkar, a manual of calculation and Kitab al-kamil fi sinaat al-adad, on the breakdown of numbers. The first book is lost and only a part of the second book remains.

References

Citations

  1. "Fibonacci's Liber Abaci (Book of Calculation)". The University of Utah . 13 December 2009. Retrieved 2018-11-27.
  2. Devlin, Keith (2012). The Man of Numbers: Fibonacci's Arithmetic Revolution . Walker Books. ISBN   978-0802779083.
  3. Boyer, Carl (1968). A History of Mathematics (PDF). New York, London, Sydney: John Wiley & Sons. p. 280.
  4. Mollin, Richard A. (2002). "A brief history of factoring and primality testing B. C. (before computers)". Mathematics Magazine. 75 (1): 18–29. doi:10.2307/3219180. MR   2107288. See also Sigler, pp. 65–66.
  5. O'Connor, John J.; Robertson, Edmund F. (1999). "Abu Kamil Shuja ibn Aslam". MacTutor History of Mathematics archive .
  6. Moyon, Marc; Spiesser, Maryvonne (3 June 2015). "L'arithmétique des fractions dans l'œuvre de Fibonacci: fondements & usages". Archive for History of Exact Sciences. 69 (4): 391–427. doi:10.1007/s00407-015-0155-y.
  7. Sigler 2002; see Grimm 1973 for another translation
  8. Scott, T. C.; Marketos, P., "Michael Scot", in O'Connor, John J.; Robertson, Edmund F. (eds.), MacTutor History of Mathematics Archive , University of St Andrews
  9. Scott, T. C.; Marketos, P. (March 2014), On the Origin of the Fibonacci Sequence (PDF), MacTutor History of Mathematics archive, University of St Andrews
  10. 1 2 3 4 Germano, Giuseppe (2013). "New Editorial Perspectives on Fibonacci's Liber Abaci". Reti Medievali Rivista. doi:10.6092/1593-2214/400.
  11. 1 2 Dictionary of Scientific Biography (PDF).

Bibliography