Local field

Last updated

In mathematics, a field K is called a (non-Archimedean) local field if it is complete with respect to a topology induced by a discrete valuation v and if its residue field k is finite. [1] Equivalently, a local field is a locally compact topological field with respect to a non-discrete topology. [2] Sometimes, the real numbers R, and the complex numbers C (with their standard topologies) are also defined to be local fields; this is the convention we will adopt below. Given a local field, the valuation defined on it can be of either of two types, each one corresponds to one of the two basic types of local fields: those in which the valuation is Archimedean and those in which it is not. In the first case, one calls the local field an Archimedean local field, in the second case, one calls it a non-Archimedean local field. [3] Local fields arise naturally in number theory as completions of global fields. [4]

Contents

While Archimedean local fields have been quite well known in mathematics for at least 250 years, the first examples of non-Archimedean local fields, the fields of p-adic numbers for positive prime integer p, were introduced by Kurt Hensel at the end of the 19th century.

Every local field is isomorphic (as a topological field) to one of the following: [3]

In particular, of importance in number theory, classes of local fields show up as the completions of algebraic number fields with respect to their discrete valuation corresponding to one of their maximal ideals. Research papers in modern number theory often consider a more general notion, requiring only that the residue field be perfect of positive characteristic, not necessarily finite. [5] This article uses the former definition.

Induced absolute value

Given such an absolute value on a field K, the following topology can be defined on K: for a positive real number m, define the subset Bm of K by

Then, the b+Bm make up a neighbourhood basis of b in K.

Conversely, a topological field with a non-discrete locally compact topology has an absolute value defining its topology. It can be constructed using the Haar measure of the additive group of the field.

Basic features of non-Archimedean local fields

For a non-Archimedean local field F (with absolute value denoted by |·|), the following objects are important:

Every non-zero element a of F can be written as a = ϖnu with u a unit, and n a unique integer. The normalized valuation of F is the surjective function v : FZ ∪ {∞} defined by sending a non-zero a to the unique integer n such that a = ϖnu with u a unit, and by sending 0 to ∞. If q is the cardinality of the residue field, the absolute value on F induced by its structure as a local field is given by: [6]

An equivalent and very important definition of a non-Archimedean local field is that it is a field that is complete with respect to a discrete valuation and whose residue field is finite.

Examples

  1. The p-adic numbers: the ring of integers of Qp is the ring of p-adic integers Zp. Its prime ideal is pZp and its residue field is Z/pZ. Every non-zero element of Qp can be written as upn where u is a unit in Zp and n is an integer, then v(upn) = n for the normalized valuation.
  2. The formal Laurent series over a finite field: the ring of integers of Fq((T)) is the ring of formal power series Fq[[T]]. Its maximal ideal is (T) (i.e. the power series whose constant term is zero) and its residue field is Fq. Its normalized valuation is related to the (lower) degree of a formal Laurent series as follows:
    (where am is non-zero).
  3. The formal Laurent series over the complex numbers is not a local field. For example, its residue field is C[[T]]/(T) = C, which is not finite.

Higher unit groups

The nth higher unit group of a non-Archimedean local field F is

for n  1. The group U(1) is called the group of principal units, and any element of it is called a principal unit. The full unit group is denoted U(0).

The higher unit groups form a decreasing filtration of the unit group

whose quotients are given by

for n  1. [7] (Here "" means a non-canonical isomorphism.)

Structure of the unit group

The multiplicative group of non-zero elements of a non-Archimedean local field F is isomorphic to

where q is the order of the residue field, and μq−1 is the group of (q−1)st roots of unity (in F). Its structure as an abelian group depends on its characteristic:

where N denotes the natural numbers;
where a  0 is defined so that the group of p-power roots of unity in F is . [8]

Theory of local fields

This theory includes the study of types of local fields, extensions of local fields using Hensel's lemma, Galois extensions of local fields, ramification groups filtrations of Galois groups of local fields, the behavior of the norm map on local fields, the local reciprocity homomorphism and existence theorem in local class field theory, local Langlands correspondence, Hodge-Tate theory (also called p-adic Hodge theory), explicit formulas for the Hilbert symbol in local class field theory, see e.g. [9]

Higher-dimensional local fields

A local field is sometimes called a one-dimensional local field.

A non-Archimedean local field can be viewed as the field of fractions of the completion of the local ring of a one-dimensional arithmetic scheme of rank 1 at its non-singular point.

For a non-negative integer n, an n-dimensional local field is a complete discrete valuation field whose residue field is an (n − 1)-dimensional local field. [5] Depending on the definition of local field, a zero-dimensional local field is then either a finite field (with the definition used in this article), or a perfect field of positive characteristic.

From the geometric point of view, n-dimensional local fields with last finite residue field are naturally associated to a complete flag of subschemes of an n-dimensional arithmetic scheme.

See also

Citations

  1. Cassels & Fröhlich 1967, p. 129, Ch. VI, Intro..
  2. Weil 1995, p. 20.
  3. 1 2 Milne 2020, p. 127, Remark 7.49.
  4. Neukirch 1999, p. 134, Sec. 5.
  5. 1 2 Fesenko & Vostokov 2002, Def. 1.4.6.
  6. Weil 1995, Ch. I, Theorem 6.
  7. Neukirch 1999, p. 122.
  8. Neukirch 1999, Theorem II.5.7.
  9. Fesenko & Vostokov 2002, Chapters 1-4, 7.

Related Research Articles

<i>p</i>-adic number Number system extending the rational numbers

In number theory, given a prime number p, the p-adic numbers form an extension of the rational numbers which is distinct from the real numbers, though with some similar properties; p-adic numbers can be written in a form similar to decimals, but with digits based on a prime number p rather than ten, and extending to the left rather than to the right.

<span class="mw-page-title-main">Algebraic number theory</span> Branch of number theory

Algebraic number theory is a branch of number theory that uses the techniques of abstract algebra to study the integers, rational numbers, and their generalizations. Number-theoretic questions are expressed in terms of properties of algebraic objects such as algebraic number fields and their rings of integers, finite fields, and function fields. These properties, such as whether a ring admits unique factorization, the behavior of ideals, and the Galois groups of fields, can resolve questions of primary importance in number theory, like the existence of solutions to Diophantine equations.

In mathematics, the adele ring of a global field is a central object of class field theory, a branch of algebraic number theory. It is the restricted product of all the completions of the global field and is an example of a self-dual topological ring.

In algebra, a valuation is a function on a field that provides a measure of the size or multiplicity of elements of the field. It generalizes to commutative algebra the notion of size inherent in consideration of the degree of a pole or multiplicity of a zero in complex analysis, the degree of divisibility of a number by a prime number in number theory, and the geometrical concept of contact between two algebraic or analytic varieties in algebraic geometry. A field with a valuation on it is called a valued field.

<span class="mw-page-title-main">Ramification (mathematics)</span> Branching out of a mathematical structure

In geometry, ramification is 'branching out', in the way that the square root function, for complex numbers, can be seen to have two branches differing in sign. The term is also used from the opposite perspective as when a covering map degenerates at a point of a space, with some collapsing of the fibers of the mapping.

In mathematics, the ring of integers of an algebraic number field is the ring of all algebraic integers contained in . An algebraic integer is a root of a monic polynomial with integer coefficients: . This ring is often denoted by or . Since any integer belongs to and is an integral element of , the ring is always a subring of .

In mathematics, in particular commutative algebra, the concept of fractional ideal is introduced in the context of integral domains and is particularly fruitful in the study of Dedekind domains. In some sense, fractional ideals of an integral domain are like ideals where denominators are allowed. In contexts where fractional ideals and ordinary ring ideals are both under discussion, the latter are sometimes termed integral ideals for clarity.

In number theory, more specifically in local class field theory, the ramification groups are a filtration of the Galois group of a local field extension, which gives detailed information on the ramification phenomena of the extension.

In commutative algebra, a regular local ring is a Noetherian local ring having the property that the minimal number of generators of its maximal ideal is equal to its Krull dimension. In symbols, let A be a Noetherian local ring with maximal ideal m, and suppose a1, ..., an is a minimal set of generators of m. Then by Krull's principal ideal theorem n ≥ dim A, and A is defined to be regular if n = dim A.

In abstract algebra, a discrete valuation ring (DVR) is a principal ideal domain (PID) with exactly one non-zero maximal ideal.

In abstract algebra, a valuation ring is an integral domain D such that for every non-zero element x of its field of fractions F, at least one of x or x−1 belongs to D.

In mathematics, a Schwartz–Bruhat function, named after Laurent Schwartz and François Bruhat, is a complex valued function on a locally compact abelian group, such as the adeles, that generalizes a Schwartz function on a real vector space. A tempered distribution is defined as a continuous linear functional on the space of Schwartz–Bruhat functions.

In commutative algebra, an element b of a commutative ring B is said to be integral over a subring A of B if b is a root of some monic polynomial over A.

In mathematics, the field with one element is a suggestive name for an object that should behave similarly to a finite field with a single element, if such a field could exist. This object is denoted F1, or, in a French–English pun, Fun. The name "field with one element" and the notation F1 are only suggestive, as there is no field with one element in classical abstract algebra. Instead, F1 refers to the idea that there should be a way to replace sets and operations, the traditional building blocks for abstract algebra, with other, more flexible objects. Many theories of F1 have been proposed, but it is not clear which, if any, of them give F1 all the desired properties. While there is still no field with a single element in these theories, there is a field-like object whose characteristic is one.

In algebraic number theory, the conductor of a finite abelian extension of local or global fields provides a quantitative measure of the ramification in the extension. The definition of the conductor is related to the Artin map.

In mathematics, an algebraic number field is an extension field of the field of rational numbers such that the field extension has finite degree . Thus is a field that contains and has finite dimension when considered as a vector space over .

In mathematics, a Berkovich space, introduced by Berkovich (1990), is a version of an analytic space over a non-Archimedean field, refining Tate's notion of a rigid analytic space.

This is a glossary of algebraic geometry.

In algebraic geometry, an unramified morphism is a morphism of schemes such that (a) it is locally of finite presentation and (b) for each and , we have that

  1. The residue field is a separable algebraic extension of .
  2. where and are maximal ideals of the local rings.

In mathematics, the Moy–Prasad filtration is a family of filtrations of p-adic reductive groups and their Lie algebras, named after Allen Moy and Gopal Prasad. The family is parameterized by the Bruhat–Tits building; that is, each point of the building gives a different filtration. Alternatively, since the initial term in each filtration at a point of the building is the parahoric subgroup for that point, the Moy–Prasad filtration can be viewed as a filtration of a parahoric subgroup of a reductive group.

References