MECP2 duplication syndrome

Last updated
MECP2 duplication syndrome
Other namesX-linked intellectual disability-hypotonia-recurrent Infections syndrome
Protein MECP2 PDB 1qk9.png
This condition is due to MECP2 overexpression
Specialty Medical genetics

MECP2 duplication syndrome (M2DS) is a rare disease that is characterized by severe intellectual disability and impaired motor function. It is an X-linked genetic disorder caused by the overexpression of MeCP2 protein.

Contents

Signs and symptoms

Symptoms of M2DS include infantile hypotonia and failure to thrive, delayed psychomotor development, impaired speech, abnormal or absent gait, epilepsy, spasticity, gastrointestinal motility problems, recurrent infections, and genitourinary abnormalities. [1] [2] [3] Many of those affected by M2DS also fit diagnostic criteria for autism. [4] M2DS can be associated with syndromic facies, namely an abnormally flat back of the head, underdevelopment of the midface, ear anomalies, deep-set eyes, prominent chin, pointed nose, and a flat nasal bridge. [4]

Cause

M2DS is one of the several types of X-linked intellectual disability. The cause of M2DS is a duplication of the MECP2 or Methyl CpG binding protein 2 gene located on the X chromosome (Xq28). [5] The MeCP2 protein plays a pivotal role in regulating brain function. Increased levels of MECP2 protein results in abnormal neural function and impaired immune system. [4] Mutations in the MECP2 gene are also commonly associated with Rett syndrome in females. Advances in genetic testing and more widespread use of Array Comparative Genomic Hybridization has led to increased diagnosis of MECP2 duplication syndrome. [6] It is thought to represent ~1% of X-linked male mental disability cases. [7] Females affected by this condition often do not show symptoms. [4]

Diagnosis

Diagnosis is made based on genetic testing. [4]

Management

Treatment is supportive and based on symptoms. [4]

Epidemiology

The syndrome primarily affects young males. [7] Preliminary studies suggest that prevalence may be 1.8 per 10,000 live male births. 50% of those affected do not live beyond 25 years of age, with deaths attributed to the impaired immune function. [8]

History

M2DS was first described in 1999. [4]

In a Nature article published on November 25, 2015, it was revealed that researchers at the Baylor College of Medicine, led by Dr. Huda Y. Zoghbi, have reversed MECP2 Duplication Syndrome in adult symptomatic mice using antisense therapy. [9] Mice treated with an experimental ASO administered through the central nervous system had a reduction of MECP2 protein to normal levels and symptoms of hypoactivity, anxiety, and abnormal social behavior were resolved. Additionally, the seizure activity of the mice and abnormal EEG discharges were abolished. Initial studies demonstrated that reducing the MECP2 protein levels to the correct amount also normalized the expression of the other genes controlled by the MECP2 protein.[ citation needed ]

Related Research Articles

<span class="mw-page-title-main">Rett syndrome</span> Genetic brain disorder

Rett syndrome (RTT) is a genetic disorder that typically becomes apparent after 6–18 months of age and almost exclusively in females. Symptoms include impairments in language and coordination, and repetitive movements. Those affected often have slower growth, difficulty walking, and a smaller head size. Complications of Rett syndrome can include seizures, scoliosis, and sleeping problems. The severity of the condition is variable.

Antisense therapy is a form of treatment that uses antisense oligonucleotides (ASOs) to target messenger RNA (mRNA). ASOs are capable of altering mRNA expression through a variety of mechanisms, including ribonuclease H mediated decay of the pre-mRNA, direct steric blockage, and exon content modulation through splicing site binding on pre-mRNA. Several ASOs have been approved in the United States, the European Union, and elsewhere.

<span class="mw-page-title-main">Rubinstein–Taybi syndrome</span> Rare genetic condition

Rubinstein–Taybi syndrome (RTS) is a rare genetic condition characterized by short stature, moderate to severe learning difficulties, distinctive facial features, and broad thumbs and first toes. Other features of the disorder vary among affected individuals. These characteristics are caused by a mutation or deletion in the CREBBP gene, located on chromosome 16, and/or the EP300 gene, located on chromosome 22.

Neurodevelopmental disorders are a group of conditions that begin to emerge during childhood. According to the American Psychiatric Association Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition, (DSM-5) published in 2013, these conditions generally appear in early childhood, usually before children start school, and can persist into adulthood. The key characteristic of all these disorders is that they negatively impact a person's functioning in one or more domains of life depending on the disorder and deficits it has caused. All of these disorders and their levels of impairment exist on a spectrum, and affected individuals can experience varying degrees of symptoms and deficits, despite having the same diagnosis.

<span class="mw-page-title-main">UBE3A</span> Protein-coding gene in Homo sapiens

Ubiquitin-protein ligase E3A (UBE3A) also known as E6AP ubiquitin-protein ligase (E6AP) is an enzyme that in humans is encoded by the UBE3A gene. This enzyme is involved in targeting proteins for degradation within cells.

<span class="mw-page-title-main">MECP2</span> DNA-binding protein involved in methylation

MECP2 is a gene that encodes the protein MECP2. MECP2 appears to be essential for the normal function of nerve cells. The protein seems to be particularly important for mature nerve cells, where it is present in high levels. The MECP2 protein is likely to be involved in turning off several other genes. This prevents the genes from making proteins when they are not needed. Recent work has shown that MECP2 can also activate other genes. The MECP2 gene is located on the long (q) arm of the X chromosome in band 28 ("Xq28"), from base pair 152,808,110 to base pair 152,878,611.

In genetics and cell biology, repression is a mechanism often used to decrease or inhibit the expression of a gene. Removal of repression is called derepression. This mechanism may occur at different stages in the expression of a gene, with the result of increasing the overall RNA or protein products. Dysregulation of derepression mechanisms can result in altered gene expression patterns, which may lead to negative phenotypic consequences such as disease.

<span class="mw-page-title-main">CDKL5</span> Protein-coding gene in humans

CDKL5 is a gene that provides instructions for making a protein called cyclin-dependent kinase-like 5 also known as serine/threonine kinase 9 (STK9) that is essential for normal brain development. Mutations in the gene can cause deficiencies in the protein. The gene regulates neuronal morphology through cytoplasmic signaling and controlling gene expression. The CDKL5 protein acts as a kinase, which is an enzyme that changes the activity of other proteins by adding a cluster of oxygen and phosphorus atoms at specific positions. Researchers are currently working to determine which proteins are targeted by the CDKL5 protein.

X-linked intellectual disability refers to medical disorders associated with X-linked recessive inheritance that result in intellectual disability.

<span class="mw-page-title-main">Adrian Bird</span> British geneticist and professor

Sir Adrian Peter Bird, is a British geneticist and Buchanan Professor of Genetics at the University of Edinburgh. Bird has spent much of his academic career in Edinburgh, from receiving his PhD in 1970 to working at the MRC Mammalian Genome Unit and later serving as director of the Wellcome Trust Centre for Cell Biology. His research focuses on understanding DNA methylation and CpG islands, and their role in diseases such as Rett syndrome.

<span class="mw-page-title-main">Huda Zoghbi</span> Lebanese scientist

Huda Yahya Zoghbi, born Huda El-Hibri, is a Lebanese-born American geneticist, and a professor at the Departments of Molecular and Human Genetics, Neuroscience and Neurology at the Baylor College of Medicine. She is the director of the Jan and Dan Duncan Neurological Research Institute. She became the editor of the Annual Review of Neuroscience as of 2018.

Epilepsy-intellectual disability in females also known as PCDH19 gene-related epilepsy or epileptic encephalopathy, early infantile, 9 (EIEE9), is a rare type of epilepsy that affects predominately females and is characterized by clusters of brief seizures, which start in infancy or early childhood, and is occasionally accompanied by varying degrees of cognitive impairment. The striking pattern of onset seizures at a young age, genetic testing and laboratory results, potential developmental delays or developmental regression and associated disorders, eases diagnosis.

Autism spectrum disorder (ASD) refers to a variety of conditions typically identified by challenges with social skills, communication, speech, and repetitive sensory-motor behaviors. The 11th International Classification of Diseases (ICD-11), released in January 2021, characterizes ASD by the associated deficits in the ability to initiate and sustain two-way social communication and restricted or repetitive behavior unusual for the individual's age or situation. Although linked with early childhood, the symptoms can appear later as well. Symptoms can be detected before the age of two and experienced practitioners can give a reliable diagnosis by that age. However, official diagnosis may not occur until much older, even well into adulthood. There is a large degree of variation in how much support a person with ASD needs in day-to-day life. This can be classified by a further diagnosis of ASD level 1, level 2, or level 3. Of these, ASD level 3 describes people requiring very substantial support and who experience more severe symptoms. ASD-related deficits in nonverbal and verbal social skills can result in impediments in personal, family, social, educational, and occupational situations. This disorder tends to have a strong correlation with genetics along with other factors. More research is identifying ways in which epigenetics is linked to autism. Epigenetics generally refers to the ways in which chromatin structure is altered to affect gene expression. Mechanisms such as cytosine regulation and post-translational modifications of histones. Of the 215 genes contributing, to some extent in ASD, 42 have been found to be involved in epigenetic modification of gene expression. Some examples of ASD signs are specific or repeated behaviors, enhanced sensitivity to materials, being upset by changes in routine, appearing to show reduced interest in others, avoiding eye contact and limitations in social situations, as well as verbal communication. When social interaction becomes more important, some whose condition might have been overlooked suffer social and other exclusion and are more likely to have coexisting mental and physical conditions. Long-term problems include difficulties in daily living such as managing schedules, hypersensitivities, initiating and sustaining relationships, and maintaining jobs.

Epigenetics of human development is the study of how epigenetics effects human development.

Mouse models have frequently been used to study Down syndrome due to the close similarity in the genomes of mice and humans, and the prevalence of mice usage in laboratory research.

<span class="mw-page-title-main">Transcriptional amplification</span>

In genetics, transcriptional amplification is the process in which the total amount of messenger RNA (mRNA) molecules from expressed genes is increased during disease, development, or in response to stimuli.

Currently there is no cure for Rett syndrome. Treatment is directed towards improving function and addressing symptoms throughout life. A multi-disciplinary team approach is typically used to treat the person throughout life. This team may include primary care physician, physical therapist, occupational therapist, speech-language pathologist, nutritionist, and support services in academic and occupational settings.

<span class="mw-page-title-main">Xp11.2 duplication</span> Genetic disorder

Xp11.2 duplication is a genomic variation marked by the duplication of an X chromosome region on the short arm p at position 11.2, defined by standard karyotyping (G-banding). This gene-rich, rearrangement prone region can be further divided into three loci - Xp11.21, Xp11.22 and Xp11.23. The duplication could involve any combination of these three loci. While the length of the duplication can vary from 0.5Mb to 55 Mb, most duplications measure about 4.5Mb and typically occur in the region of 11.22-11.23. Most affected females show preferential activation of the duplicated X chromosome. Features of affected individuals vary significantly, even among members of the same family. The Xp11.2 duplication can be 'silent' - presenting no obvious symptoms in carriers - which is known from the asymptomatic parents of affected children carrying the duplication. The common symptoms include intellectual disabilities, speech delay and learning difficulties, while in rare cases, children have seizures and a recognizable brain wave pattern when assessed by EEG (electroencephalography).

Ocular albinism late onset sensorineural deafness (OASD) is a rare, X-linked recessive disease characterized by intense visual impairments, reduced retinal pigments, translucent pale-blue irises and moderately severe hearing loss from adolescence to middle-age. It is a subtype of Ocular Albinism (OA) that is linked to Ocular albinism type I (OA1). OA1 is the most common form of ocular albinism, affecting at least 1/60,000 males.

Syndromic autism denotes cases of autism spectrum disorder that are associated with a broader medical condition, generally a syndrome. Cases without such association, which account for the majority of total autism cases, are known as non-syndromic autism.

References

  1. "MECP2 duplication syndrome - Genetic and Rare Diseases Information Center (GARD) – an NCATS Program". rarediseases.info.nih.gov. Archived from the original on 2022-02-01. Retrieved 2017-10-26.
  2. Ramocki, Melissa B.; Peters, Sarika U.; Tavyev, Y. Jane; Zhang, Feng; Carvalho, Claudia M. B.; Schaaf, Christian P.; Richman, Ronald; Fang, Ping; Glaze, Daniel G.; Lupski, James R.; Zoghbi, Huda Y. (2009). "Autism and other neuropsychiatric symptoms are prevalent in individuals withMeCP2duplication syndrome". Annals of Neurology. 66 (6): 771–782. doi:10.1002/ana.21715. ISSN   0364-5134. PMC   2801873 . PMID   20035514.
  3. Ramocki, Melissa B.; Tavyev, Y. Jane; Peters, Sarika U. (2010). "TheMECP2duplication syndrome". American Journal of Medical Genetics Part A. 152A (5): 1079–1088. doi:10.1002/ajmg.a.33184. ISSN   1552-4825. PMC   2861792 . PMID   20425814.
  4. 1 2 3 4 5 6 7 "MECP2 Duplication Syndrome".
  5. Reference, Genetics Home. "MECP2 duplication syndrome". Genetics Home Reference.
  6. "Van Wright Foundation". Van Wright Foundation.
  7. 1 2 Van Esch, H. (2011). "MECP2 Duplication Syndrome". Molecular Syndromology. 2 (3–5): 128–136. doi:10.1159/000329580. ISSN   1661-8777. PMC   3366699 . PMID   22679399.
  8. Van Esch, Hilde (7 June 1993). "MECP2 Duplication Syndrome". In Adam, Margaret P.; Ardinger, Holly H.; Pagon, Roberta A.; Wallace, Stephanie E.; Bean, Lora J.H.; Stephens, Karen; Amemiya, Anne (eds.). GeneReviews®. University of Washington, Seattle. PMID   20301461 via PubMed.
  9. Sztainberg, Yehezkel; Chen, Hong-mei; Swann, John W.; Hao, Shuang; Tang, Bin; Wu, Zhenyu; Tang, Jianrong; Wan, Ying-Wooi; Liu, Zhandong; Rigo, Frank; Zoghbi, Huda Y. (25 November 2015). "Reversal of phenotypes in MECP2 duplication mice using genetic rescue or antisense oligonucleotides". Nature. 528 (7580): 123–126. Bibcode:2015Natur.528..123S. doi:10.1038/nature16159. PMC   4839300 . PMID   26605526.

Further reading

See also