MIMO radar

Last updated
In a MIMO system, the transmitting signals from the single transmitters are different. As a result, the echo signals can be re-assigned to the source. This gives an enlarged virtual receive aperture. Mimo.png
In a MIMO system, the transmitting signals from the single transmitters are different. As a result, the echo signals can be re-assigned to the source. This gives an enlarged virtual receive aperture.

Multiple-input multiple-output (MIMO) radar is an extension of a traditional radar system to utilize multiple-inputs and multiple-outputs (antennas), similar to MIMO techniques used to increase the capacity of a radio link. [1] [2] MIMO radar is an advanced type of phased array radar employing digital receivers and waveform generators distributed across the aperture. MIMO radar signals propagate in a fashion similar to multistatic radar. However, instead of distributing the radar elements throughout the surveillance area, antennas are closely located to obtain better spatial resolution, Doppler resolution, and dynamic range. [3] MIMO radar may also be used to obtain low-probability-of-intercept radar properties. [4]

Contents

In a traditional phased array system, additional antennas and related hardware are needed to improve spatial resolution. MIMO radar systems transmit mutually orthogonal signals from multiple transmit antennas, and these waveforms can be extracted from each of the receive antennas by a set of matched filters. For example, if a MIMO radar system has 3 transmit antennas and 4 receive antennas, 12 signals can be extracted from the receiver because of the orthogonality of the transmitted signals. That is, a 12-element virtual antenna array is created using only 7 antennas by conducting digital signal processing on the received signals, thereby obtaining a finer spatial resolution compared with its phased array counterpart.

The concept of virtual array

Scenario of virtual array analysis MIMO Radar.png
Scenario of virtual array analysis

The picture shows a M-by-N MIMO radar system. Suppose that a target is located at u, the transmit antenna is located at and the receive antenna is located at . The received signal at receive antenna can be expressed as:

As mentioned earlier, if {, m=1, ..., M} is an orthogonal set, we can extract M signals from receive antenna, each of which contains the information of an individual transmitting path().

In order to make a comparison between phased array radars and MIMO radars, the relationship between transmit/receive antenna arrays and virtual arrays are discussed in several sources. [5] [1] [6] If the placements of the transmit and receive antenna array are expressed as two vectors and respectively, the placement vector of the virtual array is equal to the convolution of and :

Examples of antenna geometry to form virtual array Virtual array.png
Examples of antenna geometry to form virtual array

Picture above shows the examples of antenna geometry to form a virtual array. In the first example, two uniformly distributed antenna arrays form a 5-element virtual array despite having 6 antennas in total. In the second example, a nine-element virtual array is obtained by increasing the distance between the transmit antennas, implying that a better spatial resolution can be achieved.

To estimate the direction of arrival of the targets according to the N*M signals, methods like MUSIC (algorithm) and maximum likelihood estimation are commonly used with good results. [7] [8]

Orthogonal signals

Regular subcarrier assignment to generate orthogonal signals SPECTRALLY INTERLEAVED.jpg
Regular subcarrier assignment to generate orthogonal signals

There are a variety of orthogonal signal sets used in the field of MIMO radar. One of the proposed signal sets is the spectrally interleaved multi-carrier signal, which is a modified version of orthogonal frequency-division multiplexing signal. [9] In this approach, the total amount of available subcarriers is distributed among different transmit antennas in an interleaved way.

Another proposed signal set is orthogonal chirp signal, which can be expressed as:

By choosing different initial frequencies , these chirp waveforms can be made orthogonal. [10]

Notes

  1. 1 2 Bliss, D.W.; Forsythe, K.W. (2003). "Multiple-input multiple-output (MIMO) radar and imaging: Degrees of freedom and resolution". The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003. Pacific Grove, CA, USA: IEEE. pp. 54–59. doi:10.1109/ACSSC.2003.1291865. ISBN   9780780381049. S2CID   60633689.
  2. Kalkan, Yılmaz (2024). "20 Years of MIMO Radar". IEEE Aerospace and Electronic Systems Magazine: 1–5. doi:10.1109/MAES.2023.3349228. ISSN   0885-8985.
  3. Rabideau, D.J. (2003). "Ubiquitous MIMO multifunction digital array radar". The Thirty-Seventh Asilomar Conference on Signals, Systems & Computers, 2003. Vol. 1. pp. 1057–1064. doi:10.1109/ACSSC.2003.1292087. ISBN   978-0-7803-8104-9. S2CID   60452716.
  4. Rabideau, D J (2003). Ubiquitous MIMO Multifunction Digital Array Radar ... and the Role of Time-Energy Management in Radar (PDF). DEFENSE TECHNICAL INFORMATION CENTER. Archived (PDF) from the original on December 3, 2019.
  5. J. Li and P. Stoica (eds): MIMO RADAR SIGNAL PROCESSING. J Wiley&Sons, USA, 2009.
  6. K.W Forsythe, D.W. Bliss, and G.S. Fawcett. Multiple-input multiple output (MIMO) radar: performance issues. Conference on Signals, Systems and Computers, 1:310–315, November 2004.
  7. Gao, Xin, et al. "On the MUSIC-derived approaches of angle estimation for bistatic MIMO radar." Wireless Networks and Information Systems, 2009. WNIS'09. International Conference on. IEEE, 2009.
  8. Li, Jian, and Petre Stoica. "MIMO radar with colocated antennas." IEEE Signal Processing Magazine 24.5 (2007): 106-114.
  9. Sturm, Christian, et al. "Spectrally interleaved multi-carrier signals for radar network applications and multi-input multi-output radar." IET Radar, Sonar & Navigation 7.3 (2013): 261-269.
  10. Chen, Chun-Yang, and P. P. Vaidyanathan. "MIMO radar ambiguity properties and optimization using frequency-hopping waveforms." IEEE Transactions on Signal Processing 56.12 (2008): 5926-5936.

Related Research Articles

<span class="mw-page-title-main">Orthogonal frequency-division multiplexing</span> Method of encoding digital data on multiple carrier frequencies

In telecommunications, orthogonal frequency-division multiplexing (OFDM) is a type of digital transmission used in digital modulation for encoding digital (binary) data on multiple carrier frequencies. OFDM has developed into a popular scheme for wideband digital communication, used in applications such as digital television and audio broadcasting, DSL internet access, wireless networks, power line networks, and 4G/5G mobile communications.

<span class="mw-page-title-main">Phased array</span> Array of antennas creating a steerable beam

In antenna theory, a phased array usually means an electronically scanned array, a computer-controlled array of antennas which creates a beam of radio waves that can be electronically steered to point in different directions without moving the antennas. The general theory of an electromagnetic phased array also finds applications in ultrasonic and medical imaging application and in optics optical phased array.

<span class="mw-page-title-main">Synthetic-aperture radar</span> Form of radar used to create images of landscapes

Synthetic-aperture radar (SAR) is a form of radar that is used to create two-dimensional images or three-dimensional reconstructions of objects, such as landscapes. SAR uses the motion of the radar antenna over a target region to provide finer spatial resolution than conventional stationary beam-scanning radars. SAR is typically mounted on a moving platform, such as an aircraft or spacecraft, and has its origins in an advanced form of side looking airborne radar (SLAR). The distance the SAR device travels over a target during the period when the target scene is illuminated creates the large synthetic antenna aperture. Typically, the larger the aperture, the higher the image resolution will be, regardless of whether the aperture is physical or synthetic – this allows SAR to create high-resolution images with comparatively small physical antennas. For a fixed antenna size and orientation, objects which are further away remain illuminated longer – therefore SAR has the property of creating larger synthetic apertures for more distant objects, which results in a consistent spatial resolution over a range of viewing distances.

<span class="mw-page-title-main">Sensor array</span> Group of sensors used to increase gain or dimensionality over a single sensor

A sensor array is a group of sensors, usually deployed in a certain geometry pattern, used for collecting and processing electromagnetic or acoustic signals. The advantage of using a sensor array over using a single sensor lies in the fact that an array adds new dimensions to the observation, helping to estimate more parameters and improve the estimation performance. For example an array of radio antenna elements used for beamforming can increase antenna gain in the direction of the signal while decreasing the gain in other directions, i.e., increasing signal-to-noise ratio (SNR) by amplifying the signal coherently. Another example of sensor array application is to estimate the direction of arrival of impinging electromagnetic waves. The related processing method is called array signal processing. A third examples includes chemical sensor arrays, which utilize multiple chemical sensors for fingerprint detection in complex mixtures or sensing environments. Application examples of array signal processing include radar/sonar, wireless communications, seismology, machine condition monitoring, astronomical observations fault diagnosis, etc.

Beamforming or spatial filtering is a signal processing technique used in sensor arrays for directional signal transmission or reception. This is achieved by combining elements in an antenna array in such a way that signals at particular angles experience constructive interference while others experience destructive interference. Beamforming can be used at both the transmitting and receiving ends in order to achieve spatial selectivity. The improvement compared with omnidirectional reception/transmission is known as the directivity of the array.

In wireless communications, channel state information (CSI) is the known channel properties of a communication link. This information describes how a signal propagates from the transmitter to the receiver and represents the combined effect of, for example, scattering, fading, and power decay with distance. The method is called channel estimation. The CSI makes it possible to adapt transmissions to current channel conditions, which is crucial for achieving reliable communication with high data rates in multiantenna systems.

<span class="mw-page-title-main">Space-time adaptive processing</span>

Space-time adaptive processing (STAP) is a signal processing technique most commonly used in radar systems. It involves adaptive array processing algorithms to aid in target detection. Radar signal processing benefits from STAP in areas where interference is a problem. Through careful application of STAP, it is possible to achieve order-of-magnitude sensitivity improvements in target detection.

In the field of wireless communication, macrodiversity is a kind of space diversity scheme using several receiver or transmitter antennas for transferring the same signal. The distance between the transmitters is much longer than the wavelength, as opposed to microdiversity where the distance is in the order of or shorter than the wavelength.

Precoding is a generalization of beamforming to support multi-stream transmission in multi-antenna wireless communications. In conventional single-stream beamforming, the same signal is emitted from each of the transmit antennas with appropriate weighting such that the signal power is maximized at the receiver output. When the receiver has multiple antennas, single-stream beamforming cannot simultaneously maximize the signal level at all of the receive antennas. In order to maximize the throughput in multiple receive antenna systems, multi-stream transmission is generally required.

Multi-user MIMO (MU-MIMO) is a set of multiple-input and multiple-output (MIMO) technologies for multipath wireless communication, in which multiple users or terminals, each radioing over one or more antennas, communicate with one another. In contrast, single-user MIMO (SU-MIMO) involves a single multi-antenna-equipped user or terminal communicating with precisely one other similarly equipped node. Analogous to how OFDMA adds multiple-access capability to OFDM in the cellular-communications realm, MU-MIMO adds multiple-user capability to MIMO in the wireless realm.

<span class="mw-page-title-main">Carrier interferometry</span>

Carrier Interferometry(CI) is a spread spectrum scheme designed to be used in an Orthogonal Frequency-Division Multiplexing (OFDM) communication system for multiplexing and multiple access, enabling the system to support multiple users at the same time over the same frequency band.

<span class="mw-page-title-main">MIMO</span> Use of multiple antennas in radio

In radio, multiple-input and multiple-output (MIMO) is a method for multiplying the capacity of a radio link using multiple transmission and receiving antennas to exploit multipath propagation. MIMO has become an essential element of wireless communication standards including IEEE 802.11n, IEEE 802.11ac, HSPA+ (3G), WiMAX, and Long Term Evolution (LTE). More recently, MIMO has been applied to power-line communication for three-wire installations as part of the ITU G.hn standard and of the HomePlug AV2 specification.

In wireless communication, spatial correlation is the correlation between a signal's spatial direction and the average received signal gain. Theoretically, the performance of wireless communication systems can be improved by having multiple antennas at the transmitter and the receiver. The idea is that if the propagation channels between each pair of transmit and receive antennas are statistically independent and identically distributed, then multiple independent channels with identical characteristics can be created by precoding and be used for either transmitting multiple data streams or increasing the reliability. In practice, the channels between different antennas are often correlated and therefore the potential multi antenna gains may not always be obtainable.

<span class="mw-page-title-main">Antenna array</span> Set of multiple antennas which work together

An antenna array is a set of multiple connected antennas which work together as a single antenna, to transmit or receive radio waves. The individual antennas are usually connected to a single receiver or transmitter by feedlines that feed the power to the elements in a specific phase relationship. The radio waves radiated by each individual antenna combine and superpose, adding together to enhance the power radiated in desired directions, and cancelling to reduce the power radiated in other directions. Similarly, when used for receiving, the separate radio frequency currents from the individual antennas combine in the receiver with the correct phase relationship to enhance signals received from the desired directions and cancel signals from undesired directions. More sophisticated array antennas may have multiple transmitter or receiver modules, each connected to a separate antenna element or group of elements.

The first smart antennas were developed for military communications and intelligence gathering. The growth of cellular telephone in the 1980s attracted interest in commercial applications. The upgrade to digital radio technology in the mobile phone, indoor wireless network, and satellite broadcasting industries created new opportunities for smart antennas in the 1990s, culminating in the development of the MIMO technology used in 4G wireless networks.

Multiple-input, multiple-output orthogonal frequency-division multiplexing (MIMO-OFDM) is the dominant air interface for 4G and 5G broadband wireless communications. It combines multiple-input, multiple-output (MIMO) technology, which multiplies capacity by transmitting different signals over multiple antennas, and orthogonal frequency-division multiplexing (OFDM), which divides a radio channel into a large number of closely spaced subchannels to provide more reliable communications at high speeds. Research conducted during the mid-1990s showed that while MIMO can be used with other popular air interfaces such as time-division multiple access (TDMA) and code-division multiple access (CDMA), the combination of MIMO and OFDM is most practical at higher data rates.

Per-user unitary rate control (PU2RC) is a multi-user MIMO (multiple-input and multiple-output) scheme. PU2RC uses both transmission pre-coding and multi-user scheduling. By doing that, the network capacity is further enhanced than the capacity of the single-user MIMO scheme.

Channel sounding is a technique that evaluates a radio environment for wireless communication, especially MIMO systems. Because of the effect of terrain and obstacles, wireless signals propagate in multiple paths. To minimize or use the multipath effect, engineers use channel sounding to process the multidimensional spatial–temporal signal and estimate channel characteristics. This helps simulate and design wireless systems.

<span class="mw-page-title-main">High Resolution Wide Swath SAR imaging</span>

High Resolution Wide Swath (HRWS) imaging is an important branch in synthetic aperture radar (SAR) imaging, a remote sensing technique capable of providing high resolution images independent of weather conditions and sunlight illumination. This makes SAR very attractive for the systematic observation of dynamic processes on the Earth's surface, which is useful for environmental monitoring, earth resource mapping and military systems.

<span class="mw-page-title-main">Digital antenna array</span>

Digital antenna array(DAA) is a smart antenna with multi channels digital beamforming, usually by using fast Fourier transform (FFT). The development and practical realization of digital antenna arrays theory started in 1962 under the guidance of Vladimir Varyukhin (USSR).