MOA-2007-BLG-192L

Last updated
MOA-2007-BLG-192L
Observation data
Epoch J2000.0        Equinox J2000.0
Constellation Sagittarius
Right ascension 18h 08m 04s [1]
Declination −27° 09 00 [1]
Astrometry
Distance 2300−400+700 [2]   ly
(700−120+210 [2] [3]   pc)
Details
Mass 0.060+0.028−0.021 [3]   M
Database references
SIMBAD data

MOA-2007-BLG-192L is a low-mass red dwarf star or brown dwarf, approximately 3,000 light-years away in the constellation of Sagittarius. It is estimated to have a mass approximately 6% of the Sun's. [3] In 2008, an Earth-sized extrasolar planet was announced to be orbiting this object. [4]

Contents

Planetary system

The discovery of a planet, MOA-2007-BLG-192Lb, orbiting this object was announced on June 2, 2008. [4] This planet, with a mass of approximately 3.3 times that of Earth, is one of the smallest known extrasolar planets. It was found when it caused a gravitational microlensing event on the night of May 24, 2007, which was detected as part of the MOA-II gravitational microlensing survey at the Mount John University Observatory in New Zealand. [3]

The MOA-2007-BLG-192L system
Companion Mass Observed separation
(AU)
b 3.3+4.9−1.6 [3] M🜨 0.62+0.22−0.16 [3]

See also

Related Research Articles

<span class="mw-page-title-main">Exomoon</span> Moon beyond the Solar System

An exomoon or extrasolar moon is a natural satellite that orbits an exoplanet or other non-stellar extrasolar body.

<span class="mw-page-title-main">OGLE-2005-BLG-390Lb</span> Super-Earth orbiting OGLE-2005-BLG-390L

OGLE-2005-BLG-390Lb is a super-Earth exoplanet orbiting OGLE-2005-BLG-390L, a star 21,500 ± 3,300 light-years from Earth near the center of the Milky Way, making it one of the most distant planets known. On January 25, 2006, Probing Lensing Anomalies NETwork/Robotic Telescope Network (PLANET/Robonet), Optical Gravitational Lensing Experiment (OGLE), and Microlensing Observations in Astrophysics (MOA) made a joint announcement of the discovery. The planet does not appear to meet conditions presumed necessary to support life.

<span class="mw-page-title-main">Optical Gravitational Lensing Experiment</span> Long-term variability sky survey

The Optical Gravitational Lensing Experiment (OGLE) is a Polish astronomical project based at the University of Warsaw that runs a long-term variability sky survey (1992–present). The main goals are the detection and classification of variable stars, discovery of microlensing events, dwarf novae, and studies of the structure of the Galaxy and the Magellanic Clouds. Since the project began in 1992, it has discovered a multitude of extrasolar planets, together with the first planet discovered using the transit method (OGLE-TR-56b) and gravitational microlensing. The project has been led by professor Andrzej Udalski since its inception.

OGLE-2003-BLG-235L (MOA-2003-BLG-53L) is a star in the constellation of Sagittarius. The first gravitational microlensing event for which a planet orbiting the lens was detected around this star. The event occurred in during July 2003. Two groups observed and independently detected the event: the Optical Gravitational Lensing Experiment (OGLE) and the Microlensing Observations in Astrophysics (MOA), hence, the double designation. It is an orange dwarf star of spectral type K, which is accompanied by a giant planet.

MACHO-1997-BLG-41, commonly abbreviated as 97-BLG-41 or MACHO-97-BLG-41, was a gravitational microlensing event located in Sagittarius which occurred in July 1999. The source star is likely a giant or subgiant star of spectral type K located at a distance of around 8 kiloparsecs. The lens star is a binary system approximately 10,000 light-years away in the constellation Sagittarius. The two stars are separated from each other by about 0.9 AU and have an orbital period of around 1.5 years. The most likely mass of the system is about 0.3 times that of the Sun. Star A and star B are both red dwarfs.

<span class="mw-page-title-main">Super-Earth</span> Planet with a mass between Earth and Uranus

A Super-Earth is a type of exoplanet with a mass higher than Earth's, but substantially below those of the Solar System's ice giants, Uranus and Neptune, which are 14.5 and 17 times Earth's, respectively. The term "super-Earth" refers only to the mass of the planet, and so does not imply anything about the surface conditions or habitability. The alternative term "gas dwarfs" may be more accurate for those at the higher end of the mass scale, although "mini-Neptunes" is a more common term.

<span class="mw-page-title-main">MOA-2007-BLG-192Lb</span> Terrestrial ice planet orbiting MOA-2007-BLG-192L

MOA-2007-BLG-192Lb, occasionally shortened to MOA-192 b, is an extrasolar planet approximately 3,000 light-years away in the constellation of Sagittarius. The planet was discovered orbiting the brown dwarf or low-mass star MOA-2007-BLG-192L. At a mass of approximately 3.3 times Earth, it is one of the lowest-mass extrasolar planets at the time of discovery. It was found when it caused a gravitational microlensing event on May 24, 2007, which was detected as part of the MOA-II microlensing survey at the Mount John University Observatory in New Zealand.

HD 181433 is a star located approximately 87 light-years away in the constellation of Pavo. According to SIMBAD, it has a stellar classification of K3III-IV, which puts it on the borderline between being a red giant and a subgiant. This is inconsistent with the fact that its luminosity is only 0.308 times that of the Sun. Its entry in the Hipparcos catalogue lists a spectral type of K5V, classifying it as a dwarf star. As of 2008, three extrasolar planets are thought to be orbiting the star. There is currently little information on these planets. The name of this star comes from its identifier in the Henry Draper catalogue.

MOA-2007-BLG-400L is a star located 22472.1 light-years away in the constellation of Sagittarius. This star is presumed to be a red dwarf with a spectral type of M3V, based on its mass of 0.35 MS.

MOA-2007-BLG-400Lb is an extrasolar planet located approximately 20000 light-years away in the constellation of Sagittarius, orbiting the star MOA-2007-BLG-400L. This planet was detected on September 18, 2008 by the gravitational microlensing by Dong. It has mass between 50% and 130% of Jupiter and orbits between 0.6 and 1.1 AU.

MOA-2008-BLG-310L is a 23rd magnitude star located at least 20000 light years away in the constellation Scorpius. This star has mass 0.67 solar masses which imply that it could probably be a late K-type star.

MOA-2008-BLG-310Lb is an extrasolar planet which orbits probably the late K-type star MOA-2008-BLG-310L, located at least 20000 light years away in the constellation Scorpius. This planet has mass 23% of Jupiter or 77% of Saturn and orbits at 1.25 AU from the star. This planet was discovered by using the gravitational microlensing method on August 4, 2009. As it is typical for exoplanets detected by microlensing method, the orbital period and eccentricity are not determined.

The Microlensing Follow-Up Network is an informal group of observers who monitor high magnification gravitational microlensing events in the Milky Way's Galactic Bulge. Its goal is to detect extrasolar planets via microlensing of the parent star by the planet. μFUN is a follow-up network - they monitor microlensing events identified by survey groups such as OGLE and Microlensing Observations in Astrophysics (MOA).

MOA-2009-BLG-387Lb is an exoplanet in the orbit of the red dwarf MOA-2009-BLG-387L. Its discovery was announced on February 21, 2011, making it the eleventh planet discovered using gravitational microlensing. The planet is thought to be over twice the mass of Jupiter and to have an orbit 80 percent larger than that of Earth's, lasting approximately 1,970 days. However, its exact characteristics are difficult to constrain because the characteristics of the host star are not well known.

<span class="mw-page-title-main">MOA-2009-BLG-387L</span> Star in the constellation Sagittarius

MOA-2009-BLG-387L is a red dwarf in the Sagittarius constellation that is host to the planet MOA-2009-BLG-387Lb. The star is estimated to be nearly 20,000 light years away and approximately one fifth the mass of the Sun, although large confidence intervals exist, reflecting the uncertainties in both the mass and distance. The star drew the attention of astronomers when it became the lens of gravitational microlensing event MOA-2009-BLG-387L, in which it eclipsed a background star and created distorted caustics, an envelope of reflected or refracted light rays. Analysis of the caustic events and of follow-up observational data led to the planet's discovery, which was reported in February 2011.

MOA-2010-BLG-477L is a star whose existence was detected when it caused a microlensing event in August, 2010. The microlensing event also revealed the existence of a planet orbiting the star. At first the star was thought to be about 0.67 times the mass of the Sun, in the main-sequence phase of its stellar evolution. But by the time the star should have been separated enough in the sky from the source star of the microlensing event it was not detected, implying that it is actually a dim white dwarf star.

<span class="mw-page-title-main">OGLE-2016-BLG-1195Lb</span> Frigid super-Earth orbiting OGLE-2016-BLG-1195L

OGLE-2016-BLG-1195Lb is an extrasolar planet located about 22,000 light-years from Earth, in the galactic bulge, orbiting the 0.57±0.06M star OGLE-2016-BLG-1195L, discovered in 2017. The planet was detected using gravitational microlensing techniques managed by the Korea Astronomy and Space Science Institute and the Spitzer Space Telescope. Initially, it was believed the planet has a mass similar to Earth and is located about the same distance from its host star as the Earth is from the Sun, although it was expected to be much colder.

OGLE-2016-BLG-1190Lb is an extremely massive exoplanet, with a mass about 13.4 times that of Jupiter (MJ), or is, possibly, a low mass brown dwarf, orbiting the G-dwarf star OGLE-2016-BLG-1190L, located about 22,000 light years from Earth, in the constellation of Sagittarius, in the galactic bulge of the Milky Way.

OGLE-2018-BLG-1119Lb is a Jupiter-like gas giant exoplanet located 5,760 parsecs away, orbiting its host star at a distance of 4.06 AU and taking two years to complete one orbit. It is 0.91 times the mass of Jupiter. It was discovered in 2022 by gravitational microlensing.

References

  1. 1 2 "Notes for star MOA-2007-BLG-192-L". Extrasolar Planets Encyclopaedia . Archived from the original on 2008-09-26. Retrieved 2008-06-16.
  2. 1 2 "Notes for Star MOA-2007-BLG-192L". Extrasolar Planets Encyclopaedia . Archived from the original on 26 September 2008. Retrieved 29 February 2012.
  3. 1 2 3 4 5 6 Table 3, Bennett, D. P.; Bond, I. A.; Udalski, A.; Sumi, T.; Abe, F.; Fukui, A.; Furusawa, K.; Hearnshaw, J. B.; et al. (2008). "A Low‐Mass Planet with a Possible Sub‐Stellar‐Mass Host in Microlensing Event MOA‐2007‐BLG‐192". The Astrophysical Journal. 684 (1): 663–683. arXiv: 0806.0025 . Bibcode:2008ApJ...684..663B. doi:10.1086/589940. S2CID   14467194.
  4. 1 2 MOA-2007-BLG-192Lb: A Low-Mass Planet with a Possible Sub-Stellar-Mass Host Archived 2008-06-06 at the Wayback Machine , David P. Bennett. Accessed on line July 3, 2008.