Mark 56 Gun Fire Control System

Last updated
AN/SPG-35
USS Hornet director front.jpg
AN/SPG-35 aboard USS Hornet
Country of origin United States
Introduced1950s
Type Radar tracker
Frequency X band
PRF 3,000 pps
Beamwidth 2
Pulsewidth0.1-0.15 μs
Range27 km (14.6 nmi)
Precision9 m (10 yd)
Power50 kW

Mark 56 Gun Fire Control System (Mk.56 GFCS) is a gun fire-control system made up of AN/SPG-35 radar tracker and the Mark 42 ballistic computer. [1]

Contents

Overview

The directional board is maneuverable, equipped with an X-band radar Mk.35 (later renamed AN/SPG-35 based on the naming convention for military electronic equipment) and an optical sight, and is manned with two operators on board. [2] Target tracking by the operator's optical sight is also possible, but fully automated tracking is the basic operation, [3] and blindfire is also possible for the first time in the US Navy. [4] [1]

Mark 42 Ballistic Computer

First, the target is captured by a spiral scan that slowly scans the space by swinging the beam at an angle of 6 degrees, and then a conical scan that quickly measures and distances by narrowing the beam swing angle to 0.5 degrees. Track the target by scanning. [1] The speed of the tracking target is obtained by the gyroscope of the directional board and the tachometer generator of the distance tracking servo system. Ballistic calculation was performed by the Mk.42 ballistic computer housed in the ship, and it was possible to aim two types of guns at the same target by adding a ballistic calculation housing. [2] During the war, there were many cases where radar tracking could not catch up with the attacking aircraft incoming at high speed. [1]

AN/SPG-35 Radar Tracker

The first model of this model was delivered in August 1945, and has been in operation since the 1950s. Performance improvements continued after the war, and it became possible to start shooting in 2 seconds from the start of tracking for subsonic aircraft. [1] Mk.68 GFCS was the standard for the Mark 42 5"/54 cal gun, but this machine was also used as a secondary directional board. Well known electric engineer Ivan A. Getting was involved in the creation of AN/SPG-35.[ citation needed ]

The Japan Maritime Self-Defense Force requested the equipment of this model with the Harukaze-class destroyer, which was the first domestic escort ship after the war, but it was not approved by the US side, and the actual equipment was in the Second Defense Build-up Plan. [2]

AN/SPG-35 aboard USS Saint Paul USS Saint Paul (CA-73) shelling Korea 1953.jpeg
AN/SPG-35 aboard USS Saint Paul

On board ships

Flag of the United States.svg United States Navy

Naval Ensign of Japan.svg Maritime Self-Defense Force

MRS-3

In the United Kingdom, the MRS-3 (Medium Range System) was developed based on this model. The Type 903 radar tracker was commissioned in 1946 and 1958. The Type 904 radar tracker was also developed as a derivative of the GWS.22 Seacat air defense missile system. [4]

In addition, the Mk.64 GUNAR, which changed the shooting command radar to the gun side equipment (initially the same AN/SPG-34 as the Mk.63, later AN/SPG-48), was also developed, and this was mainly used by the Royal Canadian Navy. This later evolved into the Mk.69, which was independently digitized and refurbished by Canada and changed its radar to SPG-515. [5] [4]

MRS-3 aboard HMS Zulu and a Daring-class destroyer Brits vlootbezoek aan Amsterdam, de oorlogsschepen aan he Stenen Hoofd, Bestanddeelnr 920-3291.jpg
MRS-3 aboard HMS Zulu and a Daring-class destroyer

Naval Ensign of the United Kingdom.svg Royal Navy

Naval Ensign of India.svg Indian Navy

Flag of the Peruvian Navy.svg Peruvian Navy

See also

Citations

  1. 1 2 3 4 5 Friedman, Norman (2006). The Naval Institute guide to world naval weapon systems. Naval Institute Press. ISBN   9781557502629.
  2. 1 2 3 Sakata, Hideo (March 1995). History of the Maritime Self-Defense Force FCS, Ships of the World. Vol. 493. Gaijinsha. pp. 70–75.
  3. Tada, Tomohiko (August 2006). Fire Control System and Radar (Special Feature: Transition of Anti-Aircraft Weapons), Ships of the World. Vol. 662. Gaijinsha. pp. 92–97.
  4. 1 2 3 Kotaki, Kunio (March 1955). The Profile of Foreign-made FCS, which is still the protagonist of missile control, Ships of the World. Vol. 493. Gaijinsha. pp. 92–95.
  5. "Canadian Navy Fire Control Systems". www.hazegray.org. Retrieved 2022-02-18.
  6. "radar-equipped MRS 3 fire control Archives". Heritage Machines. Retrieved 2022-02-18.

Related Research Articles

<span class="mw-page-title-main">Phalanx CIWS</span> Close-in weapon system

The Phalanx CIWS is an automated gun-based close-in weapon system to defend military watercraft automatically against incoming threats such as aircraft, missiles, and small boats. It was designed and manufactured by the General Dynamics Corporation, Pomona Division, later a part of Raytheon. Consisting of a radar-guided 20 mm (0.8 in) Vulcan cannon mounted on a swiveling base, the Phalanx has been used by the United States Navy and the naval forces of 15 other countries. The U.S. Navy deploys it on every class of surface combat ship, except the Zumwalt-class destroyer and San Antonio-class amphibious transport dock. Other users include the British Royal Navy, the Royal Australian Navy, the Royal New Zealand Navy, the Royal Canadian Navy, and the U.S. Coast Guard.

<span class="mw-page-title-main">Anti-ship missile</span> Missile used to attack ships

An anti-ship missile (AShM) is a guided missile that is designed for use against ships and large boats. Most anti-ship missiles are of the sea skimming variety, and many use a combination of inertial guidance and active radar homing. A large number of other anti-ship missiles use infrared homing to follow the heat that is emitted by a ship; it is also possible for anti-ship missiles to be guided by radio command all the way.

<span class="mw-page-title-main">Aegis Combat System</span> American integrated naval weapons system developed by RCA and produced by Lockheed Martin

The Aegis Combat System is an American integrated naval weapons system, which uses computers and radars to track and guide weapons to destroy enemy targets. It was developed by the Missile and Surface Radar Division of RCA, and it is now produced by Lockheed Martin.

<span class="mw-page-title-main">AN/SPG-51</span>

The AN/SPG-51 is an American tracking / illumination fire-control radar for RIM-24 Tartar and RIM-66 Standard missiles. It is used for target tracking and Surface-to-air missile guidance as part of the Mk. 73 gun and missile director system, which is part of the Tartar Guided Missile Fire Control System.

<i>Sachsen</i>-class frigate German air-defense frigates

The F124 Sachsen class is the German Navy's latest class of highly advanced air-defense frigates. The design of the Sachsen-class frigate is based on that of the F123 Brandenburg class but with enhanced stealth features designed to deceive an opponent's radar and acoustic sensors. The class incorporates an advanced multifunction radar APAR and a SMART-L long-range radar which is purported to be capable of detecting stealth aircraft and stealth missiles.

<span class="mw-page-title-main">Tartar Guided Missile Fire Control System</span> An air defense system

The Tartar Guided Missile Fire Control System is an air defense system developed by the United States Navy to defend warships from air attack. Since its introduction the system has been improved and sold to several United States allies.

<span class="mw-page-title-main">5-inch/54-caliber Mark 45 gun</span> Naval artillery gun

The 5" /54 caliber lightweight gun is a U.S. naval artillery gun mount consisting of a 5 in (127 mm) L54 Mark 19 gun on the Mark 45 mount. It was designed and built by United Defense, a company later acquired by BAE Systems Land & Armaments, which continued manufacture.

<i>De Zeven Provinciën</i>-class frigate Dutch air-defence and command frigates

The four De Zeven Provinciën-class frigates are air-defence and command frigates in service with the Royal Netherlands Navy. This class of ships is also known as "LCF". The ships are similar to the German Sachsen-class frigates in role and mission.

<span class="mw-page-title-main">AN/SPG-55</span>

The AN/SPG-55 was an American tracking / illumination radar for Terrier and RIM-67 Standard missiles (SM-1ER/SM-2ER). It was used for target tracking and surface-to-air missile guidance as part of the Mk 76 missile fire control system. It was controlled by a UNIVAC 1218 computer.

<span class="mw-page-title-main">AN/SPG-53</span> United States Navy Gun Fire-control radar

The AN/SPG-53 was a United States Navy Gun Fire-control radar, used in conjunction with the Mark 68 gun fire-control system.

Armament of the <i>Iowa</i>-class battleship Armament of WWII battleship

The Iowa-class battleships are the most heavily armed warships the United States Navy has ever put to sea, due to the continual development of their onboard weaponry. The first Iowa-class ship was laid down in June 1940; in their World War II configuration, each of the Iowa-class battleships had a main battery of 16-inch (406 mm) guns that could hit targets nearly 20 statute miles (32 km) away with a variety of artillery shells designed for anti-ship or bombardment work. The secondary battery of 5-inch (127 mm) guns could hit targets nearly 9 statute miles (14 km) away with solid projectiles or proximity fuzed shells, and was effective in an anti-aircraft role as well. Each of the four battleships carried a wide array of 20 mm and 40 mm anti-aircraft guns for defense against enemy aircraft.

<span class="mw-page-title-main">AN/SPQ-9</span>

AN/SPQ-9A,, is a United States Navy multi-purpose surface search and fire control radar used with the Mk-86 gun fire-control system. It is a two dimensional surface-search radar, meaning it provides only range and bearing but not elevation. It is intended primarily to detect and track targets at sea level, on the surface of the water for either gun fire engagement or navigation. It can however, also detect and track low altitude air targets.

<span class="mw-page-title-main">Ship gun fire-control system</span> Type of analogue fire-control system

Ship gun fire-control systems (GFCS) are analogue fire-control systems that were used aboard naval warships prior to modern electronic computerized systems, to control targeting of guns against surface ships, aircraft, and shore targets, with either optical or radar sighting. Most US ships that are destroyers or larger employed gun fire-control systems for 5-inch (127 mm) and larger guns, up to battleships, such as Iowa class.

<span class="mw-page-title-main">AN/SPY-1</span> Passive electronically scanned radar system

The AN/SPY-1 is a United States Navy 3D radar system manufactured by Lockheed Martin. The array is a passive electronically scanned system and a key component of the Aegis Combat System. The system is computer controlled and uses four complementary antennas to provide 360-degree coverage. The system was first installed in 1973 on USS Norton Sound and entered active service in 1983 as the SPY-1A on USS Ticonderoga. The -1A was installed on ships up to CG-58, with the -1B upgrade first installed on USS Princeton in 1986. The upgraded -1B(V) was retrofitted to existing ships from CG-59 up to the last, USS Port Royal.

<span class="mw-page-title-main">Mark 34 Gun Weapon System</span> U.S. Navy gun control system

The Mark 34 Gun Weapon System (GWS) is a component of the Aegis Combat System that is responsible for controlling and providing fire control to the 5" Mark 45 gun. It is used on the U.S. Navy Arleigh Burke-class destroyer and several later Ticonderoga-class cruisers. The Mk 34 GWS receives target data from the ship's sensors and off-ship sources, performs ballistic calculations, and produces gun control orders. The system is made up of the gun mount itself, the fire-control computer, and an optical sight.

<span class="mw-page-title-main">AK-130</span> Naval cannon

The AK-130 is a Russian designed automatic dual barrel naval cannon with a caliber of 130 millimetres (5.1 in), capable of firing 10-40 rounds per minute.

<span class="mw-page-title-main">AN/SPG-60</span>

The AN/SPG-60 is a United States tracking radar that is part of the MK-86 Gun Fire Control System (GFCS). It is used for air tracking and on some MK-86 configurations it is also used for illumination for RIM-24 Tartar and RIM-66 Standard missiles. Though the radar is primarily an air tracking radar, the SPG-60 radar can be used for surface tracking. With the boresight mounted camera, the radar could also be used as a sight for optical tracking, optical engagement and damage assessment.

<span class="mw-page-title-main">OPS-28</span>

OPS-28 is a Pulse-Doppler radar manufactured by Japan Radio. It is installed as a low-altitude warning / anti-water search radar mainly on the Maritime Self-Defense Force's escort ship. Variations include OPS-28-1, OPS-28B, OPS-28C, OPS-28D, OPS-28E and OPS-28F.

<span class="mw-page-title-main">AN/SPS-10</span>

AN/SPS-10 is a two-dimensional radar manufactured by Raytheon Technologies. It was used by the US Navy as a surface-search radar after World War II and was equipped aboard naval ships during the Cold War. Variants include AN/SPS-10B, AN-SPS/10E, and AN/SPS-10F.

<span class="mw-page-title-main">Mark 63 Gun Fire Control System</span> Gun Fire Control System of the United States Navy

Mark 63 Gun Fire Control System is a gun fire-control system made up of AN/SPG-34 radar tracker and the Mark 29 gun sight. They were usually equipped for the control of twin QF 4-inch naval gun Mk XVI and Mk.33 twin 3"/50 cal guns.

References