Mark I Fire Control Computer

Last updated
Mark 1A Computer Mark 1A Fire Control Computer Controls.jpg
Mark 1A Computer
Mk 37 Director above the bridge of destroyer USS Cassin Young with AN/SPG-25 radar antenna FletcherMk37GunDirector.png
Mk 37 Director above the bridge of destroyer USS Cassin Young with AN/SPG-25 radar antenna

The Mark 1, and later the Mark 1A, Fire Control Computer was a component of the Mark 37 Gun Fire Control System deployed by the United States Navy during World War II and up to 1991 and possibly later. It was originally developed by Hannibal C. Ford of the Ford Instrument Company. [1] and William Newell. It was used on a variety of ships, ranging from destroyers (one per ship) to battleships (four per ship). The Mark 37 system used tachymetric target motion prediction to compute a fire control solution. It contained a target simulator which was updated by further target tracking until it matched.

Contents

Weighing more than 3,000 pounds (1,400 kg), [2] the Mark 1 itself was installed in the plotting room, a watertight compartment that was located deep inside the ship's hull to provide as much protection against battle damage as possible.

Essentially an electromechanical analog computer, the Mark 1 was electrically linked to the gun mounts and the Mark 37 gun director, the latter mounted as high on the superstructure as possible to afford maximum visual and radar range. The gun director was equipped with both optical and radar range finding, and was able to rotate on a small barbette-like structure. Using the range finders and telescopes for bearing and elevation, the director was able to produce a continuously varying set of outputs, referred to as line-of-sight (LOS) data, that were electrically relayed to the Mark 1 via synchro motors. The LOS data provided the target's present range, bearing, and in the case of aerial targets, altitude. Additional inputs to the Mark 1A were continuously generated from the stable element, a gyroscopic device that reacted to the roll and pitch of the ship, the pitometer log, which measured the ship's speed through the water, and an anemometer, which provided wind speed and direction. The Stable Element would now be called a vertical gyro.

In "Plot" (the plotting room), a team of sailors stood around the four-foot-tall (1.2 m) Mark 1 and continuously monitored its operation. They would also be responsible for calculating and entering the average muzzle velocity of the projectiles to be fired before action started. This calculation was based on the type of propellant to be used and its temperature, the projectile type and weight, and the number of rounds fired through the guns to date.

Given these inputs, the Mark 1 automatically computed the lead angles to the future position of the target at the end of the projectile's time of flight, adding in corrections for gravity, relative wind, the magnus effect of the spinning projectile, and parallax, the latter compensation necessary because the guns themselves were widely displaced along the length of the ship. Lead angles and corrections were added to the LOS data to generate the line-of-fire (LOF) data. The LOF data, bearing and elevation, as well as the projectile's fuze time, was sent to the mounts by synchro motors, whose motion actuated hydraulic servos with excellent dynamic accuracy to aim the guns.

Once the system was "locked" on the target, it produced a continuous fire control solution. While these fire control systems greatly improved the long-range accuracy of ship-to-ship and ship-to-shore gunfire, especially on heavy cruisers and battleships, it was in the anti-aircraft warfare mode that the Mark 1 made the greatest contribution. However, the anti-aircraft value of analog computers such as the Mark 1 was greatly reduced with the introduction of jet aircraft, where the relative motion of the target became such that the computer's mechanism could not react quickly enough to produce accurate results. Furthermore, the target speed, originally limited to 300 knots by a mechanical stop, was twice doubled to 600, then 1,200 knots by gear ratio changes.

The design of the postwar Mark 1A may have been influenced by the Bell Labs Mark 8, which was developed as an all electrical computer, incorporating technology from the M9 gun data computer as a safeguard to ensure adequate supplies of fire control computers for the USN during WW2. [3] Surviving Mark 1 computers were upgraded to the Mark 1A standard after World War II ended.

Among the upgrades were removing the vector solver from the Mark 1 and redesigning the reverse coordinate conversion scheme that updated target parameters.

The scheme kept the four component integrators, obscure devices not included in explanations of basic fire control mechanisms. They worked like a ball–type computer mouse, but had shaft inputs to rotate the ball and to determine the angle of its axis of rotation.

The round target course indicator on the right side of the star shell computer with the two panic buttons is a holdover from WW II days when early tracking data and initial angle–output position of the vector solver caused target speed to decrease. Pushbuttons slewed the vector solver quickly.

See also

Related Research Articles

<span class="mw-page-title-main">Analog computer</span> Computer that uses continuously variable technology

An analog computer or analogue computer is a type of computer that uses the continuous variation aspect of physical phenomena such as electrical, mechanical, or hydraulic quantities to model the problem being solved. In contrast, digital computers represent varying quantities symbolically and by discrete values of both time and amplitude.

<span class="mw-page-title-main">Kerrison Predictor</span>

The Kerrison Predictor was one of the first fully automated anti-aircraft fire-control systems. It was used to automate the aiming of the British Army's Bofors 40 mm guns and provide accurate lead calculations through simple inputs on three main handwheels.

<span class="mw-page-title-main">16-inch/50-caliber Mark 7 gun</span> Naval gun

The 16"/50 caliber Mark 7 – United States Naval Gun is the main armament of the Iowa-class battleships and was the planned main armament of the cancelled Montana-class battleship.

<span class="mw-page-title-main">Synchro</span> Variable transformers used in control systems

A synchro is, in effect, a transformer whose primary-to-secondary coupling may be varied by physically changing the relative orientation of the two windings. Synchros are often used for measuring the angle of a rotating machine such as an antenna platform. In its general physical construction, it is much like an electric motor. The primary winding of the transformer, fixed to the rotor, is excited by an alternating current, which by electromagnetic induction, causes voltages to appear between the Y-connected secondary windings fixed at 120 degrees to each other on the stator. The voltages are measured and used to determine the angle of the rotor relative to the stator.

<span class="mw-page-title-main">Fire-control system</span> Device which assists use of a weapon by location, tracking, and direction of fire at a target

A fire-control system (FCS) is a number of components working together, usually a gun data computer, a director, and radar, which is designed to assist a ranged weapon system to target, track, and hit a target. It performs the same task as a human gunner firing a weapon, but attempts to do so faster and more accurately.

<span class="mw-page-title-main">Counter-battery radar</span>

A counter-battery radar is a radar system that detects artillery projectiles fired by one or more guns, howitzers, mortars or rocket launchers and, from their trajectories, locates the position on the ground of the weapon that fired it. Such radars are a subclass of the wider class of target acquisition radars.

<span class="mw-page-title-main">Gun laying</span> Process of aiming an artillery piece or turret

Gun laying is the process of aiming an artillery piece or turret, such as a gun, howitzer, or mortar, on land, in air, or at sea, against surface or aerial targets. It may be laying for direct fire, where the gun is aimed similarly to a rifle, or indirect fire, where firing data is calculated and applied to the sights. The term includes automated aiming using, for example, radar-derived target data and computer-controlled guns.

<span class="mw-page-title-main">Bombsight</span> Aircraft system for aiming bombs

A bombsight is a device used by military aircraft to drop bombs accurately. Bombsights, a feature of combat aircraft since World War I, were first found on purpose-designed bomber aircraft and then moved to fighter-bombers and modern tactical aircraft as those aircraft took up the brunt of the bombing role.

<span class="mw-page-title-main">5-inch/38-caliber gun</span> Deck gun

The Mark 12 5"/38 caliber gun was a United States dual-purpose naval gun, but also installed in single-purpose mounts on a handful of ships. The 38 caliber barrel was a mid-length compromise between the previous United States standard 5"/51 low-angle gun and 5"/25 anti-aircraft gun. United States naval gun terminology indicates the gun fired a projectile 5 inches (127 mm) in diameter, and the barrel was 38 calibers long. The increased barrel length provided greatly improved performance in both anti-aircraft and anti-surface roles compared to the 5"/25 gun. However, except for the barrel length and the use of semi-fixed ammunition, the 5"/38 gun was derived from the 5"/25 gun. Both weapons had power ramming, which enabled rapid fire at high angles against aircraft. The 5"/38 entered service on USS Farragut, commissioned in 1934, the first new destroyer design since the last Clemson was built in 1922. The base ring mount, which improved the effective rate of fire, entered service on USS Porter, commissioned in 1936.

<span class="mw-page-title-main">HACS</span> British anti-aircraft fire-control system

High Angle Control System (HACS) was a British anti-aircraft fire-control system employed by the Royal Navy from 1931 and used widely during World War II. HACS calculated the necessary deflection required to place an explosive shell in the location of a target flying at a known height, bearing and speed.

<span class="mw-page-title-main">Rangekeeper</span>

Rangekeepers were electromechanical fire control computers used primarily during the early part of the 20th century. They were sophisticated analog computers whose development reached its zenith following World War II, specifically the Computer Mk 47 in the Mk 68 Gun Fire Control system. During World War II, rangekeepers directed gunfire on land, sea, and in the air. While rangekeepers were widely deployed, the most sophisticated rangekeepers were mounted on warships to direct the fire of long-range guns.

In naval gunnery, when long-range guns became available, an enemy ship would move some distance after the shells were fired. It became necessary to figure out where the enemy ship, the target, was going to be when the shells arrived. The process of keeping track of where the ship was likely to be was called rangekeeping, because the distance to the target—the range—was a very important factor in aiming the guns accurately. As time passed, train, the direction to the target, also became part of rangekeeping, but tradition kept the term alive.

Armament of the <i>Iowa</i>-class battleship Armament of WWII battleship

The Iowa-class battleships are the most heavily armed gunships the United States Navy has ever put to sea, due to the continual development of their onboard weaponry. The first Iowa-class ship was laid down in June 1940; in their World War II configuration, each of the Iowa-class battleships had a main battery of 16-inch (406 mm) guns that could hit targets nearly 20 statute miles (32 km) away with a variety of artillery shells designed for anti-ship or bombardment work. The secondary battery of 5-inch (127 mm) guns could hit targets nearly 9 statute miles (14 km) away with solid projectiles or proximity fuzed shells, and was effective in an anti-aircraft role as well. Each of the four battleships carried a wide array of 20 mm and 40 mm anti-aircraft guns for defense against enemy aircraft.

<span class="mw-page-title-main">Stabilised Automatic Bomb Sight</span> Royal Air Force bombsight used during World War II

The Stabilized Automatic Bomb Sight (SABS) was a Royal Air Force bombsight used in small numbers during World War II. The system worked along similar tachometric principles as the more famous Norden bombsight, but was somewhat simpler, lacking the Norden's autopilot feature.

<span class="mw-page-title-main">Director (military)</span>

A director, also called an auxiliary predictor, is a mechanical or electronic computer that continuously calculates trigonometric firing solutions for use against a moving target, and transmits targeting data to direct the weapon firing crew.

<span class="mw-page-title-main">Dumaresq</span>

The Dumaresq is a mechanical calculating device invented around 1902 by Lieutenant John Dumaresq of the Royal Navy. It is an analogue computer that relates vital variables of the fire control problem to the movement of one's own ship and that of a target ship.

<span class="mw-page-title-main">Ship gun fire-control system</span> Type of analogue fire-control system

Ship gun fire-control systems (GFCS) are analogue fire-control systems that were used aboard naval warships prior to modern electronic computerized systems, to control targeting of guns against surface ships, aircraft, and shore targets, with either optical or radar sighting. Most US ships that are destroyers or larger employed gun fire-control systems for 5-inch (127 mm) and larger guns, up to battleships, such as Iowa class.

Gyro rate unit refers to a fire-control computer developed by the Royal Navy of the United Kingdom in 1937, and which was used extensively on British warships in World War II. In the 1930s the Royal Navy began to investigate the possibility of combining gyroscopes with optical sights to directly and accurately measure target aircraft speed and direction and began development of the GRU in 1937. A gyroscope was attached, via mechanical linkage, to an optical monocular sight to form the gyro rate unit or GRU.

<span class="mw-page-title-main">Coast Artillery fire control system</span>

In the U.S. Army Coast Artillery Corps, the term fire control system was used to refer to the personnel, facilities, technology and procedures that were used to observe designated targets, estimate their positions, calculate firing data for guns directed to hit those targets, and assess the effectiveness of such fire, making corrections where necessary.

<span class="mw-page-title-main">Torpedo Data Computer</span>

The Torpedo Data Computer (TDC) was an early electromechanical analog computer used for torpedo fire-control on American submarines during World War II. Britain, Germany, and Japan also developed automated torpedo fire control equipment, but none were as advanced as the US Navy's TDC, as it was able to automatically track the target rather than simply offering an instantaneous firing solution. This unique capability of the TDC set the standard for submarine torpedo fire control during World War II.

References

  1. Mark 1 Computer at NavWeaps.com
  2. Gallagher, Sean. "Gears of war: When mechanical analog computers ruled the waves". Ars Technica . Condé Nast . Retrieved 18 March 2014.
  3. Annals of the History of Computing, Volume 4, Number 3, July 1982 Electrical Computers for Fire Control, p218-46 W. H. C. Higgins, B. D. Holbrook, and J. W. Emling "...The development model of the Mark 8 (Figures 9 and 10) was delivered to the Naval Research Laboratory Annex at North Beach, Maryland, on February 15, 1944, whereupon extensive comparison tests of it and the Mark 1 were made, using both the Mark 37 and the Bell Labs Mark 7 radar as tracking devices. These tests were primarily photo-data runs, with actual aircraft (usually executing ordered manoeuvres) as targets; firing tests were not practicable at North Beach. These tests indicated that the two machines were comparable in the accuracy of the gun orders delivered, except in regions where mathematical approximations inherent in the design of the Mark1 sometimes resulted in substantial errors. (The Markx8 geometry was substantially free of such errors.) It was also found that the Mark 8 reached solution much faster than the Mark 1. Since one of the drawbacks observed in fleet experience with the Mark 1 was its sluggishness, it was decided to attempt to modify the Mark 1 in accordance with the principles of the Mark 8 to obtain a faster solution time..." p232