Marl

Last updated
Marl Piece of marl.JPG
Marl
Scala dei Turchi coastal marl formation, southern Sicily Scala dei Turchi panorama.jpg
Scala dei Turchi coastal marl formation, southern Sicily

Marl is an earthy material rich in carbonate minerals, clays, and silt. When hardened into rock, this becomes marlstone. It is formed in marine or freshwater environments, often through the activities of algae.

Contents

Marl makes up the lower part of the cliffs of Dover, and the Channel Tunnel follows these marl layers between France and the United Kingdom. Marl is also a common sediment in post-glacial lakes, such as the marl ponds of the northeastern United States.

Marl has been used as a soil conditioner and neutralizing agent for acid soil and in the manufacture of cement.

Description

Scheme of the transitional lithotypes from mud (or mudstone) to lime (or limestone), illustrating the definition of marl (marlstone) as a mix of calcium carbonate and clay Marl vs clay & lime EN.PNG
Scheme of the transitional lithotypes from mud (or mudstone) to lime (or limestone), illustrating the definition of marl (marlstone) as a mix of calcium carbonate and clay

Marl or marlstone is a carbonate-rich mud or mudstone which contains variable amounts of clays and silt. The term was originally loosely applied to a variety of materials, most of which occur as loose, earthy deposits consisting chiefly of an intimate mixture of clay and calcium carbonate, [1] formed under freshwater conditions. These typically contain 35–65% clay and 65–35% carbonate. [2] [3] The term is today often used to describe indurated marine deposits and lacustrine (lake) sediments which more accurately should be named 'marlstone'. [4]

Marlstone is an indurated (resists crumbling or powdering) rock of about the same composition as marl. This is more correctly described as an earthy or impure argillaceous limestone. It has a blocky subconchoidal fracture, and is less fissile than shale. [4] The dominant carbonate mineral in most marls is calcite, but other carbonate minerals such as aragonite or dolomite may be present. [5]

Glauconitic marl is marl containing pellets of glauconite, a clay mineral that gives the marl a green color. [6] Glauconite is characteristic of sediments deposited in marine conditions. [7]

Occurrences

Geological profile along the tunnel as constructed. For most of its length the tunnel bores through a chalk marl stratum (layer) Channel Tunnel geological profile 1.svg
Geological profile along the tunnel as constructed. For most of its length the tunnel bores through a chalk marl stratum (layer)

The lower stratigraphic units of the chalk cliffs of Dover consist of a sequence of glauconitic marls followed by rhythmically banded limestone and marl layers. [8] Such alternating cycles of chalk and marl are common in Cretaceous beds of northwestern Europe. [9] The Channel Tunnel follows these marl layers between France and the United Kingdom. [10] Upper Cretaceous cyclic sequences in Germany and marl–opal-rich Tortonian-Messinian strata in the Sorbas Basin related to multiple sea drawdown have been correlated with Milankovitch orbital forcing. [11]

Marl as lacustrine sediment is common in post-glacial lake-bed sediments. [12] [13] [14] Chara , a macroalga also known as stonewort, thrives in shallow lakes with high pH and alkalinity, where its stems and fruiting bodies become calcified. After the alga dies, the calcified stems and fruiting bodies break down into fine carbonate particles that mingle with silt and clay to produce marl. [15] Marl ponds of the northeastern United States are often kettle ponds in areas of limestone bedrock that become poor in nutrients (oligotrophic) due to precipitation of essential phosphate. Normal pond life is unable to survive, and skeletons of freshwater molluscs such as Sphaerium and Planorbis accumulate as part of the bottom marl. [13]

In Hungary, Buda Marl is found that was formed in the Upper Eocene era. It lies between layers of rock and soil and may be defined it as both "weak rock and strong soil." [16]

Economic geology

Marl has been used as a soil conditioner and neutralizing agent for acid soil [13] [17] and in the manufacture of Portland cement. [18] Because some marls have a very low permeability, they have been exploited for construction of the Channel Tunnel between England and France and are being investigated for the storage of nuclear waste.

Historical use in agriculture

Marl is one of the oldest soil amendments used in agriculture. In addition to increasing available calcium, marl is valuable for improving soil structure and decreasing soil acidity [19] and thereby making other nutrients more available. [20] It was used sporadically in Britain beginning in prehistoric times [21] and its used was mentioned by Pliny the Elder in the 1st century. [22] Its more widespread use from the 16th century on contributed to the early modern agricultural revolution. [21] However, the lack of a high-energy economy hindered its large-scale use until the Industrial Revolution. [20]

Marl was used extensively in Britain, particularly in Lancashire, during the 18th century. The marl was normally extracted close to its point of use, so that almost every field had a marl pit, but some marl was transported greater distances by railroad. However, marl was gradually replaced by lime and imported mineral fertilizers early in the 19th century. [23] A similar historical pattern was seen in Scotland. [21]

Marl was one a few soil amendments available in limited quantities the southern United States, where soils were generally poor in nutrients, prior to about 1840. [24] By the late 19th century, marl was being mined on an industrial scale in New Jersey [25] and was increasingly being used on a more scientific basis, with marl being classified by grade [26] [27] and the state geological survey publishing detailed chemical analyses. [28]

Modern agricultural and aquacultural uses

Marl continues to be used for agriculture into the 21st century, though less frequently. [29] The rate of application must be adjusted for the reduced content of calcium carbonate versus straight lime, expressed as the calcium carbonate equivalent. Because the carbonate in marl is predominantly calcium carbonate, magnesium deficiency may be seen in crops treated with marl if they are not also supplemented with magnesium. [17]

Marl has been used in Pamlico Sound to provide a suitable artificial substrate for oysters in a reef-like environment. [29]

Portland cement

Marl has been used in the manufacture of Portland cement. [18] It is abundant and yields better physical and mechanical properties than metakaolin as a supplementary cementitious material [30] and can be calcined at a considerably lower temperature. [31] [32]

Civil engineering

The Channel Tunnel was constructed in the West Melbury Marly Chalk, a geological formation containing marl beds. This formation was chosen because of its very low permeability, absence of chert, and lack of fissures found in overlying formations. The underlying Glauconitic Marl is easily recognizable in core samples and helped establish the right level for excavating the tunnel. [33]

Marl soil has poor engineering properties, particularly when alternately wetted and dried. [34] The soils can be stabilized by adding pozzolan (volcanic ash) to the soil. [35]

Nuclear waste storage

Some marl beds have a very low permeability and are under consideration for use in the storage of nuclear waste. One such proposed storage site is the Wellenberg in central Switzerland. [36]

Marl lakes

Deposition from a Marl lake inside a sheltered paint can, taken from Siseebakwet Lake Siseebakwet Lake MN Marl deposition Eric Laska.jpg
Deposition from a Marl lake inside a sheltered paint can, taken from Siseebakwet Lake

A marl lake is a lake whose bottom sediments include large deposits of marl. [18] They are most often found in areas of recent glaciation [37] and are characterized by alkaline water, rich in dissolved calcium carbonate, from which carbonate minerals are deposited. [38]

Marl lakes have frequently been dredged or mined for marl, often used for manufacturing Portland cement. [18] However, they are regarded as ecologically important, [39] and are vulnerable to damage by silting, nutrient pollution, drainage, and invasive species. In Britain, only the marl lakes of the more remote parts of northern Scotland are likely to remain pristine into the near future. [38]

See also

Related Research Articles

<span class="mw-page-title-main">Gypsum</span> Soft calcium sulfate mineral

Gypsum is a soft sulfate mineral composed of calcium sulfate dihydrate, with the chemical formula CaSO4·2H2O. It is widely mined and is used as a fertilizer and as the main constituent in many forms of plaster, drywall and blackboard or sidewalk chalk. Alabaster, a fine-grained white or lightly tinted variety of gypsum, has been used for sculpture by many cultures including Ancient Egypt, Mesopotamia, Ancient Rome, the Byzantine Empire, and the Nottingham alabasters of Medieval England. Gypsum also crystallizes as translucent crystals of selenite. It forms as an evaporite mineral and as a hydration product of anhydrite.

<span class="mw-page-title-main">Limestone</span> Sedimentary rocks made of calcium carbonate

Limestone is a type of carbonate sedimentary rock which is the main source of the material lime. It is composed mostly of the minerals calcite and aragonite, which are different crystal forms of CaCO3. Limestone forms when these minerals precipitate out of water containing dissolved calcium. This can take place through both biological and nonbiological processes, though biological processes, such as the accumulation of corals and shells in the sea, have likely been more important for the last 540 million years. Limestone often contains fossils which provide scientists with information on ancient environments and on the evolution of life.

<span class="mw-page-title-main">Sandstone</span> Type of sedimentary rock

Sandstone is a clastic sedimentary rock composed mainly of sand-sized silicate grains. Sandstones comprise about 20–25% of all sedimentary rocks.

<span class="mw-page-title-main">Sedimentary rock</span> Rock formed by the deposition and subsequent cementation of material

Sedimentary rocks are types of rock that are formed by the accumulation or deposition of mineral or organic particles at Earth's surface, followed by cementation. Sedimentation is the collective name for processes that cause these particles to settle in place. The particles that form a sedimentary rock are called sediment, and may be composed of geological detritus (minerals) or biological detritus. The geological detritus originated from weathering and erosion of existing rocks, or from the solidification of molten lava blobs erupted by volcanoes. The geological detritus is transported to the place of deposition by water, wind, ice or mass movement, which are called agents of denudation. Biological detritus was formed by bodies and parts of dead aquatic organisms, as well as their fecal mass, suspended in water and slowly piling up on the floor of water bodies. Sedimentation may also occur as dissolved minerals precipitate from water solution.

<span class="mw-page-title-main">Chalk</span> Soft, white, porous sedimentary rock made of calcium carbonate

Chalk is a soft, white, porous, sedimentary carbonate rock. It is a form of limestone composed of the mineral calcite and originally formed deep under the sea by the compression of microscopic plankton that had settled to the sea floor. Chalk is common throughout Western Europe, where deposits underlie parts of France, and steep cliffs are often seen where they meet the sea in places such as the Dover cliffs on the Kent coast of the English Channel.

<span class="mw-page-title-main">Celestine (mineral)</span> Sulfate mineral

Celestine (the IMA-accepted name) or celestite is a mineral consisting of strontium sulfate (SrSO4). The mineral is named for its occasional delicate blue color. Celestine and the carbonate mineral strontianite are the principal sources of the element strontium, commonly used in fireworks and in various metal alloys.

<span class="mw-page-title-main">Chert</span> Hard, fine-grained sedimentary rock composed of cryptocrystalline silica

Chert is a hard, fine-grained sedimentary rock composed of microcrystalline or cryptocrystalline quartz, the mineral form of silicon dioxide (SiO2). Chert is characteristically of biological origin, but may also occur inorganically as a chemical precipitate or a diagenetic replacement, as in petrified wood.

<span class="mw-page-title-main">Concretion</span> Compact mass formed by precipitation of mineral cement between particles

A concretion is a hard, compact mass formed by the precipitation of mineral cement within the spaces between particles, and is found in sedimentary rock or soil. Concretions are often ovoid or spherical in shape, although irregular shapes also occur. The word 'concretion' is derived from the Latin concretio "(act of) compacting, condensing, congealing, uniting", itself from con meaning 'together' and crescere meaning "to grow". Concretions form within layers of sedimentary strata that have already been deposited. They usually form early in the burial history of the sediment, before the rest of the sediment is hardened into rock. This concretionary cement often makes the concretion harder and more resistant to weathering than the host stratum.

<span class="mw-page-title-main">Greensand</span> Sand or sandstone which has a greenish color

Greensand or green sand is a sand or sandstone which has a greenish color. This term is specifically applied to shallow marine sediment that contains noticeable quantities of rounded greenish grains. These grains are called glauconies and consist of a mixture of mixed-layer clay minerals, such as smectite and glauconite. Greensand is also loosely applied to any glauconitic sediment.

<span class="mw-page-title-main">Glauconite</span> Iron potassium phyllosilicate mineral of blue-green to green color

Glauconite is an iron potassium phyllosilicate mineral of characteristic green color which is very friable and has very low weathering resistance.

<span class="mw-page-title-main">Agricultural lime</span> Soil additive containing calcium carbonate and other ingredients

Agricultural lime, also called aglime, agricultural limestone, garden lime or liming, is a soil additive made from pulverized limestone or chalk. The primary active component is calcium carbonate. Additional chemicals vary depending on the mineral source and may include calcium oxide. Unlike the types of lime called quicklime and slaked lime, powdered limestone does not require lime burning in a lime kiln; it only requires milling. All of these types of lime are sometimes used as soil conditioners, with a common theme of providing a base to correct acidity, but lime for farm fields today is often crushed limestone. Historically, liming of farm fields in centuries past was often done with burnt lime; the difference is at least partially explained by the fact that affordable mass-production-scale fine milling of stone and ore relies on technologies developed since the mid-19th century.

<span class="mw-page-title-main">Caliche</span> Calcium carbonate based concretion of sediment

Caliche is a sedimentary rock, a hardened natural cement of calcium carbonate that binds other materials—such as gravel, sand, clay, and silt. It occurs worldwide, in aridisol and mollisol soil orders—generally in arid or semiarid regions, including in central and western Australia, in the Kalahari Desert, in the High Plains of the western United States, in the Sonoran Desert, Chihuahuan Desert and Mojave Desert of North America, and in eastern Saudi Arabia at Al-Hasa. Caliche is also known as calcrete or kankar. It belongs to the duricrusts. The term caliche is Spanish and is originally from the Latin calx, meaning lime.

<span class="mw-page-title-main">Carbonate rock</span> Class of sedimentary rock

Carbonate rocks are a class of sedimentary rocks composed primarily of carbonate minerals. The two major types are limestone, which is composed of calcite or aragonite (different crystal forms of CaCO3), and dolomite rock (also known as dolostone), which is composed of mineral dolomite (CaMg(CO3)2). They are usually classified based on texture and grain size. Importantly, carbonate rocks can exist as metamorphic and igneous rocks, too. When recrystallized carbonate rocks are metamorphosed, marble is created. Rare igneous carbonate rocks even exist as intrusive carbonatites and, even rarer, there exists volcanic carbonate lava.

<span class="mw-page-title-main">Calcareous</span> Adjective meaning mostly or partly composed of calcium carbonate

Calcareous is an adjective meaning "mostly or partly composed of calcium carbonate", in other words, containing lime or being chalky. The term is used in a wide variety of scientific disciplines.

<span class="mw-page-title-main">Ikaite</span> Hexahydrated calcium carbonate mineral

Ikaite is the mineral name for the hexahydrate of calcium carbonate, CaCO3·6H2O. Ikaite tends to form very steep or spiky pyramidal crystals, often radially arranged, of varied sizes from thumbnail size aggregates to gigantic salient spurs. It is only found in a metastable state and decomposes rapidly by losing most of its water content once removed from near-freezing water. This "melting mineral" is more commonly known through its pseudomorphs.

<span class="mw-page-title-main">Phosphorus cycle</span> Biogeochemical movement

The phosphorus cycle is the biogeochemical cycle that describes the movement of phosphorus through the lithosphere, hydrosphere, and biosphere. Unlike many other biogeochemical cycles, the atmosphere does not play a significant role in the movement of phosphorus, because phosphorus and phosphorus-based compounds are usually solids at the typical ranges of temperature and pressure found on Earth. The production of phosphine gas occurs in only specialized, local conditions. Therefore, the phosphorus cycle should be viewed from whole Earth system and then specifically focused on the cycle in terrestrial and aquatic systems.

<span class="mw-page-title-main">Marine sediment</span>

Marine sediment, or ocean sediment, or seafloor sediment, are deposits of insoluble particles that have accumulated on the seafloor. These particles have their origins in soil and rocks and have been transported from the land to the sea, mainly by rivers but also by dust carried by wind and by the flow of glaciers into the sea. Additional deposits come from marine organisms and chemical precipitation in seawater, as well as from underwater volcanoes and meteorite debris.

Rhizoliths are organosedimentary structures formed in soils or fossil soils (paleosols) by plant roots. They include root moulds, casts, and tubules, root petrifactions, and rhizocretions. Rhizoliths, and other distinctive modifications of carbonate soil texture by plant roots, are important for identifying paleosols in the post-Silurian geologic record. Rock units whose structure and fabric were established largely by the activity of plant roots are called rhizolites.

<span class="mw-page-title-main">Marl lake</span> Alkaline lake rich in calcium carbonate

A marl lake is a type of alkaline lake whose bottom sediments include large deposits of marl, a mixture of clay and carbonate minerals. The term is particularly applied to lakes that have been dredged or mined for marl, often for manufacturing Portland cement.

References

Citations

Bibliography

Further reading