Mathematical morphology

Last updated
A shape (in blue) and its morphological dilation (in green) and erosion (in yellow) by a diamond-shaped structuring element. DilationErosion.png
A shape (in blue) and its morphological dilation (in green) and erosion (in yellow) by a diamond-shaped structuring element.

Mathematical morphology (MM) is a theory and technique for the analysis and processing of geometrical structures, based on set theory, lattice theory, topology, and random functions. MM is most commonly applied to digital images, but it can be employed as well on graphs, surface meshes, solids, and many other spatial structures.

Contents

Topological and geometrical continuous-space concepts such as size, shape, convexity, connectivity, and geodesic distance, were introduced by MM on both continuous and discrete spaces. MM is also the foundation of morphological image processing, which consists of a set of operators that transform images according to the above characterizations.

The basic morphological operators are erosion, dilation, opening and closing.

MM was originally developed for binary images, and was later extended to grayscale functions and images. The subsequent generalization to complete lattices is widely accepted today as MM's theoretical foundation.

History

Mathematical Morphology was developed in 1964 by the collaborative work of Georges Matheron and Jean Serra, at the École des Mines de Paris , France. Matheron supervised the PhD thesis of Serra, devoted to the quantification of mineral characteristics from thin cross sections, and this work resulted in a novel practical approach, as well as theoretical advancements in integral geometry and topology.

In 1968, the Centre de Morphologie Mathématique was founded by the École des Mines de Paris in Fontainebleau, France, led by Matheron and Serra.

During the rest of the 1960s and most of the 1970s, MM dealt essentially with binary images, treated as sets, and generated a large number of binary operators and techniques: Hit-or-miss transform, dilation, erosion, opening, closing, granulometry, thinning, skeletonization, ultimate erosion, conditional bisector, and others. A random approach was also developed, based on novel image models. Most of the work in that period was developed in Fontainebleau.

From the mid-1970s to mid-1980s, MM was generalized to grayscale functions and images as well. Besides extending the main concepts (such as dilation, erosion, etc.) to functions, this generalization yielded new operators, such as morphological gradients, top-hat transform and the Watershed (MM's main segmentation approach).

In the 1980s and 1990s, MM gained a wider recognition, as research centers in several countries began to adopt and investigate the method. MM started to be applied to a large number of imaging problems and applications, especially in the field of non-linear filtering of noisy images.

In 1986, Serra further generalized MM, this time to a theoretical framework based on complete lattices. This generalization brought flexibility to the theory, enabling its application to a much larger number of structures, including color images, video, graphs, meshes, etc. At the same time, Matheron and Serra also formulated a theory for morphological filtering, based on the new lattice framework.

The 1990s and 2000s also saw further theoretical advancements, including the concepts of connections and levelings .

In 1993, the first International Symposium on Mathematical Morphology (ISMM) took place in Barcelona, Spain. Since then, ISMMs are organized every 2–3 years: Fontainebleau, France (1994); Atlanta, USA (1996); Amsterdam, Netherlands (1998); Palo Alto, CA, USA (2000); Sydney, Australia (2002); Paris, France (2005); Rio de Janeiro, Brazil (2007); Groningen, Netherlands (2009); Intra (Verbania), Italy (2011); Uppsala, Sweden (2013); Reykjavík, Iceland (2015); and Fontainebleau, France (2017).

Related Research Articles

In mathematics, a continuous function is a function such that a small variation of the argument induces a small variation of the value of the function. This implies there are no abrupt changes in value, known as discontinuities. More precisely, a function is continuous if arbitrarily small changes in its value can be assured by restricting to sufficiently small changes of its argument. A discontinuous function is a function that is not continuous. Until the 19th century, mathematicians largely relied on intuitive notions of continuity and considered only continuous functions. The epsilon–delta definition of a limit was introduced to formalize the definition of continuity.

<span class="mw-page-title-main">Intermediate value theorem</span> Continuous function on an interval takes on every value between its values at the ends

In mathematical analysis, the intermediate value theorem states that if is a continuous function whose domain contains the interval [a, b], then it takes on any given value between and at some point within the interval.

In mathematics, the infimum of a subset of a partially ordered set is the greatest element in that is less than or equal to each element of if such an element exists. In other words, it is the greatest element of that is lower or equal to the lowest element of . Consequently, the term greatest lower bound is also commonly used. The supremum of a subset of a partially ordered set is the least element in that is greater than or equal to each element of if such an element exists. In other words, it is the least element of that is greater than or equal to the greatest element of . Consequently, the supremum is also referred to as the least upper bound.

In mathematics, in particular abstract algebra, a graded ring is a ring such that the underlying additive group is a direct sum of abelian groups such that . The index set is usually the set of nonnegative integers or the set of integers, but can be any monoid. The direct sum decomposition is usually referred to as gradation or grading.

In mathematics, coalgebras or cogebras are structures that are dual to unital associative algebras. The axioms of unital associative algebras can be formulated in terms of commutative diagrams. Turning all arrows around, one obtains the axioms of coalgebras. Every coalgebra, by duality, gives rise to an algebra, but not in general the other way. In finite dimensions, this duality goes in both directions.

In mathematics, the Hausdorff distance, or Hausdorff metric, also called Pompeiu–Hausdorff distance, measures how far two subsets of a metric space are from each other. It turns the set of non-empty compact subsets of a metric space into a metric space in its own right. It is named after Felix Hausdorff and Dimitrie Pompeiu.

This is a glossary of some terms used in various branches of mathematics that are related to the fields of order, lattice, and domain theory. Note that there is a structured list of order topics available as well. Other helpful resources might be the following overview articles:

In functional analysis and operator theory, a bounded linear operator is a linear transformation between topological vector spaces (TVSs) and that maps bounded subsets of to bounded subsets of If and are normed vector spaces, then is bounded if and only if there exists some such that for all

<span class="mw-page-title-main">Erosion (morphology)</span> Basic operation in mathematical morphology

Erosion is one of two fundamental operations in morphological image processing from which all other morphological operations are based. It was originally defined for binary images, later being extended to grayscale images, and subsequently to complete lattices. The erosion operation usually uses a structuring element for probing and reducing the shapes contained in the input image.

Dilation is one of the basic operations in mathematical morphology. Originally developed for binary images, it has been expanded first to grayscale images, and then to complete lattices. The dilation operation usually uses a structuring element for probing and expanding the shapes contained in the input image.

<span class="mw-page-title-main">Opening (morphology)</span>

In mathematical morphology, opening is the dilation of the erosion of a set A by a structuring element B:

<span class="mw-page-title-main">Closing (morphology)</span>

In mathematical morphology, the closing of a set A by a structuring element B is the erosion of the dilation of that set,

<span class="mw-page-title-main">Join and meet</span> Concept in order theory

In mathematics, specifically order theory, the join of a subset of a partially ordered set is the supremum of denoted and similarly, the meet of is the infimum, denoted In general, the join and meet of a subset of a partially ordered set need not exist. Join and meet are dual to one another with respect to order inversion.

In mathematics, a Riesz space, lattice-ordered vector space or vector lattice is a partially ordered vector space where the order structure is a lattice.

In mathematical morphology, hit-or-miss transform is an operation that detects a given configuration in a binary image, using the morphological erosion operator and a pair of disjoint structuring elements. The result of the hit-or-miss transform is the set of positions where the first structuring element fits in the foreground of the input image, and the second structuring element misses it completely.

In mathematics, particularly measure theory, the essential range, or the set of essential values, of a function is intuitively the 'non-negligible' range of the function: It does not change between two functions that are equal almost everywhere. One way of thinking of the essential range of a function is the set on which the range of the function is 'concentrated'.

In digital image processing, morphological skeleton is a skeleton representation of a shape or binary image, computed by means of morphological operators.

In mathematical morphology and digital image processing, a morphological gradient is the difference between the dilation and the erosion of a given image. It is an image where each pixel value indicates the contrast intensity in the close neighborhood of that pixel. It is useful for edge detection and segmentation applications.

<span class="mw-page-title-main">Granulometry (morphology)</span>

In mathematical morphology, granulometry is an approach to compute a size distribution of grains in binary images, using a series of morphological opening operations. It was introduced by Georges Matheron in the 1960s, and is the basis for the characterization of the concept of size in mathematical morphology.

In mathematics, the injective tensor product of two topological vector spaces (TVSs) was introduced by Alexander Grothendieck and was used by him to define nuclear spaces. An injective tensor product is in general not necessarily complete, so its completion is called the completed injective tensor products. Injective tensor products have applications outside of nuclear spaces. In particular, as described below, up to TVS-isomorphism, many TVSs that are defined for real or complex valued functions, for instance, the Schwartz space or the space of continuously differentiable functions, can be immediately extended to functions valued in a Hausdorff locally convex TVS without any need to extend definitions from real/complex-valued functions to -valued functions.

References

Binary morphology

In binary morphology, an image is viewed as a subset of a Euclidean space or the integer grid , for some dimension d.

Structuring element

The basic idea in binary morphology is to probe an image with a simple, pre-defined shape, drawing conclusions on how this shape fits or misses the shapes in the image. This simple "probe" is called the structuring element, and is itself a binary image (i.e., a subset of the space or grid).

Here are some examples of widely used structuring elements (denoted by B):

Basic operators

The basic operations are shift-invariant (translation invariant) operators strongly related to Minkowski addition.

Let E be a Euclidean space or an integer grid, and A a binary image in E.

Erosion

The erosion of the dark-blue square by a disk, resulting in the light-blue square. Erosion.png
The erosion of the dark-blue square by a disk, resulting in the light-blue square.

The erosion of the binary image A by the structuring element B is defined by

where Bz is the translation of B by the vector z, i.e., , .

When the structuring element B has a center (e.g., B is a disk or a square), and this center is located on the origin of E, then the erosion of A by B can be understood as the locus of points reached by the center of B when B moves inside A. For example, the erosion of a square of side 10, centered at the origin, by a disc of radius 2, also centered at the origin, is a square of side 6 centered at the origin.

The erosion of A by B is also given by the expression .

Example application: Assume we have received a fax of a dark photocopy. Everything looks like it was written with a pen that is bleeding. Erosion process will allow thicker lines to get skinny and detect the hole inside the letter "o".

Dilation

The dilation of the dark-blue square by a disk, resulting in the light-blue square with rounded corners. Dilation.png
The dilation of the dark-blue square by a disk, resulting in the light-blue square with rounded corners.

The dilation of A by the structuring element B is defined by

The dilation is commutative, also given by .

If B has a center on the origin, as before, then the dilation of A by B can be understood as the locus of the points covered by B when the center of B moves inside A. In the above example, the dilation of the square of side 10 by the disk of radius 2 is a square of side 14, with rounded corners, centered at the origin. The radius of the rounded corners is 2.

The dilation can also be obtained by , where Bs denotes the symmetric of B, that is, .

Example application: dilation is the dual operation of the erosion. Figures that are very lightly drawn get thick when "dilated". Easiest way to describe it is to imagine the same fax/text is written with a thicker pen.

Opening

The opening of the dark-blue square by a disk, resulting in the light-blue square with round corners. Opening.png
The opening of the dark-blue square by a disk, resulting in the light-blue square with round corners.

The opening of A by B is obtained by the erosion of A by B, followed by dilation of the resulting image by B:

The opening is also given by , which means that it is the locus of translations of the structuring element B inside the image A. In the case of the square of side 10, and a disc of radius 2 as the structuring element, the opening is a square of side 10 with rounded corners, where the corner radius is 2.

Example application: Let's assume someone has written a note on a non-soaking paper and that the writing looks as if it is growing tiny hairy roots all over. Opening essentially removes the outer tiny "hairline" leaks and restores the text. The side effect is that it rounds off things. The sharp edges start to disappear.

Closing

The closing of the dark-blue shape (union of two squares) by a disk, resulting in the union of the dark-blue shape and the light-blue areas. Closing.png
The closing of the dark-blue shape (union of two squares) by a disk, resulting in the union of the dark-blue shape and the light-blue areas.

The closing of A by B is obtained by the dilation of A by B, followed by erosion of the resulting structure by B:

The closing can also be obtained by , where Xc denotes the complement of X relative to E (that is, ). The above means that the closing is the complement of the locus of translations of the symmetric of the structuring element outside the image A.

Properties of the basic operators

Here are some properties of the basic binary morphological operators (dilation, erosion, opening and closing):

  • They are translation invariant.
  • They are increasing, that is, if , then , and , etc.
  • The dilation is commutative: .
  • If the origin of E belongs to the structuring element B, then .
  • The dilation is associative, i.e., . Moreover, the erosion satisfies .
  • Erosion and dilation satisfy the duality .
  • Opening and closing satisfy the duality .
  • The dilation is distributive over set union
  • The erosion is distributive over set intersection
  • The dilation is a pseudo-inverse of the erosion, and vice versa, in the following sense: if and only if .
  • Opening and closing are idempotent.
  • Opening is anti-extensive, i.e., , whereas the closing is extensive, i.e., .

Other operators and tools

Grayscale morphology

Watershed of the gradient of the cardiac image Watershed of gradient of MRI heart image.png
Watershed of the gradient of the cardiac image

In grayscale morphology, images are functions mapping a Euclidean space or grid E into , where is the set of reals, is an element larger than any real number, and is an element smaller than any real number.

Grayscale structuring elements are also functions of the same format, called "structuring functions".

Denoting an image by f(x) the structuring function by b(x) and the support of b by B, the grayscale dilation of f by b is given by

where "sup" denotes the supremum.

Similarly, the erosion of f by b is given by

where "inf" denotes the infimum.

Just like in binary morphology, the opening and closing are given respectively by

Flat structuring functions

It is common to use flat structuring elements in morphological applications. Flat structuring functions are functions b(x) in the form

where .

In this case, the dilation and erosion are greatly simplified, and given respectively by

In the bounded, discrete case (E is a grid and B is bounded), the supremum and infimum operators can be replaced by the maximum and minimum. Thus, dilation and erosion are particular cases of order statistics filters, with dilation returning the maximum value within a moving window (the symmetric of the structuring function support B), and the erosion returning the minimum value within the moving window B.

In the case of flat structuring element, the morphological operators depend only on the relative ordering of pixel values, regardless their numerical values, and therefore are especially suited to the processing of binary images and grayscale images whose light transfer function is not known.

Other operators and tools

By combining these operators one can obtain algorithms for many image processing tasks, such as feature detection, image segmentation, image sharpening, image filtering, and classification. Along this line one should also look into Continuous Morphology [1]

Mathematical morphology on complete lattices

Complete lattices are partially ordered sets, where every subset has an infimum and a supremum. In particular, it contains a least element and a greatest element (also denoted "universe").

Adjunctions (dilation and erosion)

Let be a complete lattice, with infimum and supremum symbolized by and , respectively. Its universe and least element are symbolized by U and , respectively. Moreover, let be a collection of elements from L.

A dilation is any operator that distributes over the supremum, and preserves the least element. I.e.:

An erosion is any operator that distributes over the infimum, and preserves the universe. I.e.:

Dilations and erosions form Galois connections. That is, for every dilation there is one and only one erosion that satisfies

for all .

Similarly, for every erosion there is one and only one dilation satisfying the above connection.

Furthermore, if two operators satisfy the connection, then must be a dilation, and an erosion.

Pairs of erosions and dilations satisfying the above connection are called "adjunctions", and the erosion is said to be the adjoint erosion of the dilation, and vice versa.

Opening and closing

For every adjunction , the morphological opening and morphological closing are defined as follows:

The morphological opening and closing are particular cases of algebraic opening (or simply opening) and algebraic closing (or simply closing). Algebraic openings are operators in L that are idempotent, increasing, and anti-extensive. Algebraic closings are operators in L that are idempotent, increasing, and extensive.

Particular cases

Binary morphology is a particular case of lattice morphology, where L is the power set of E (Euclidean space or grid), that is, L is the set of all subsets of E, and is the set inclusion. In this case, the infimum is set intersection, and the supremum is set union.

Similarly, grayscale morphology is another particular case, where L is the set of functions mapping E into , and , , and , are the point-wise order, supremum, and infimum, respectively. That is, is f and g are functions in L, then if and only if ; the infimum is given by ; and the supremum is given by .

See also

Notes

  1. G. Sapiro, R. Kimmel, D. Shaked, B. Kimia, and A. M. Bruckstein. Implementing continuous-scale morphology via curve evolution. Pattern Recognition, 26(9):1363–1372, 1993.

References