Megaladapis

Last updated

Contents

Megaladapis
Temporal range: Pleistocene-Holocene
Megaladapis2.jpg
Megaladapis edwardsi skeleton
Extinct  (1280–1420 CE)
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Eukaryota
Kingdom: Animalia
Phylum: Chordata
Class: Mammalia
Order: Primates
Suborder: Strepsirrhini
Superfamily: Lemuroidea
Family: Megaladapidae
Forsyth Major, 1894 [1]
Genus: Megaladapis
Forsyth Major, 1894 [1]
Species

Subgenus Peloriadapis

  • M. edwardsi

Subgenus Megaladapis

  • M. madagascariensis
  • M. grandidieri

Megaladapis, informally known as the koala lemur, [1] [2] is an extinct genus of lemurs belonging to the family Megaladapidae, consisting of three species that once inhabited the island of Madagascar. The largest measured between 1.3 to 1.5 m (4 to 5 ft) in length.

Adaptations

Megaladapis was quite different from any living lemur. Its body was squat and built like that of the modern koala. Its long arms, fingers, feet, and toes were specialized for grasping trees, and its legs were splayed for vertical climbing. The hands and feet were curved and the ankles and wrists did not have the usual stability needed to travel on the ground that most other lemurids have. [3] Its pedal morphology suggests Megaladapis evolved to live in an arboreal environment. Its foot had a large hallux and lateral abductor musculature that helped it to grasp vertically on trees, features shared by other arboreal species. [4] Its head was unlike that of any other primate; most strikingly, its eyes were on the sides of its skull, instead of forward on the skull as in all other primates.

Its long canine teeth and cow-like jaw formed a tapering snout. Its jaw muscles were powerful for chewing the tough native vegetation. Based on the microwear patterns of its teeth, Megaladapis is believed to have been folivorous, using a leaf-cropping foraging method. These patterns found no permanent upper incisors or the presence of an expanded articular facet on the posterior face of the mandibular condyle. This diet and similar phenotypic traits of the teeth are the basis for concluding a shared ancestry with the Lepilemur . [5] The diet, however, might be the factor that influences the dental development. Species with a larger brain, later initiation of molar crowns, and longer formation of crown are considered to have more of an omnivorous diet. In contrast, Megaladapis lived on a folivorous diet, [6] despite having a smaller brain, early initiation of molar crowns, and fast crown formation. [7]

Its body weight reached 140 kg (310 lb). [8] Other estimates suggest 46.5–85.1 kg (103–188 lb) but its still much larger than any extanct lemur. [9] The shape of its skull was unique among all known primates, with a nasal region which showed similarities to those of rhinoceros, a feature that probably combined with an enlarged upper lip for grasping leaves.[ citation needed ] It had the largest body size of any lemur, with double the body mass of the next largest extinct lemur.[ specify ] An endocast of its skull showed that it had a brain capacity of about 250 cc, about 3 to 4 times the size of a domestic cat's, [10] which is small for its size when compared to other lemurs. [7] Compared to the size of the skull, the diameter of the orbits protrudes outwards and forwards in a tabular form, suggesting that Megaladapis was diurnal. [11] Based on when molar crown initiation occurred, Megaladapis's gestation period is thought to have been at least 198 days, but was likely longer. [7]

The island's topography was always changing, and like other lemurs, Megaladapis was specialized within its own niche. The general expectations of tree climbers such as Megaladapis is that with an increase in size, the body's forelimbs will also increase proportionally. [12]

Some exterior scratches and incisions were found on both its metatarsus and its mandibula. The cuts on the metatarsus are comparable to those found in caves and are thought to have been produced by humans, while those on the mandibula seem to have been produced by some instrument engineered for cutting – indications that the Megalapadis was at some point in direct contact with the anatomically-modern humans of its time. [11]

There are several well-preserved fragments of the upper and lower jaw. The upper molars of Lepilemur are very close in shape to those of Megaladapis. The main difference between the two is that the outer crown-surface of Lepilemur's molars forms a nearly straight line, almost parallel with the long axis of the skull, and the outer side is slightly concave inwards. The antero-internal cingulum is missing in the molars of Lepilemur. [10]

Details about the anterior parts of the dentition, the canines and incisors, are difficult to determine. The bulle osseve[ clarification needed ] are broken away. The foremost facial portion and base of the skull is also wanting. The total length of the skull of M. madagascariensis has been calculated to be about 250 mm (9.8 in), about from three to four times that of a domestic cat. Based on the wear on the teeth, the obliteration of most of the sutures of the very thick bones, and the strongly developed crests, it is believed to have been an elderly individual. [13]

Cultural references

It is often believed that Malagasy legends of the tretretretre or tratratratra, an extinct animal, refer to Megaladapis, but the details of these tales, notably the "human-like" face of the animal, match the related Palaeopropithecus much better. [14]

Extinction

When humans arrived on Madagascar 2,300 years ago, in addition to the species alive today, there were at least 17 species of now-extinct "giant" lemur, including Megaladapis. The landscape in which giant lemurs were found were largely forested areas with dense vegetation. Almost directly after human arrival, there was a rapid decline in the spores of Sporormiella which indicates a decrease in megafaunal biomass. Charcoal microparticles being found in surveys of various areas in Madagascar give evidence to the fact that human habitat modification only occurred after this decline in megafaunal biomass. Charcoal deposits provide evidence to the fact that humans used fire to clear large pieces of land very rapidly. The habitats that Megaladapis once lived in were very well adapted to be turned into grasslands, which provided little to no cover from outside forces for these creatures. Thus, the scientific conclusion arrived upon is one that hypothesizes that "giant" lemur populations, like the Megaladapis, were on the decline due to habitat fragmentation, and human activities (for example, clearing of land through "slash-and-burn" techniques) were the final push to extinction for these lemurs between 500 and 600 years ago. [15]

Over-hunting by humans was also deemed a major contributor to the extinction of "giant" lemurs. Minor droughts are frequent in Madagascar, but a major drought approximately 1000 years ago significantly lowered lake levels, caused a severe vegetation transition, and caused fires to spark in fire-prone grasslands and savannas. Crop failures due to these conditions would drive inhabitants to hunt for bushmeat to survive, and these giant lemurs were an easy source of said meat. [16]

Megaladapis were slow-moving, bulky creatures that were diurnal, or active during the day. Lemurs in general also had small group sizes and were highly seasonal breeders (they breed for about one to two weeks a year). [17] These features already put them at an evolutionary disadvantage; Megaladapis (along with the other species of giant lemur) were more susceptible to predators (humans more specifically), forest fires, and habitat destruction due to these traits. [18] The low breeding rates also made recovery from devastating loss of life among the species very difficult to recover from, as evidenced by the eventual extinction of Megaladapis. [17]

Related Research Articles

<span class="mw-page-title-main">Sportive lemur</span> Genus of lemurs

The sportive lemurs are the medium-sized primates that make up the family Lepilemuridae. The family consists of only one extant genus, Lepilemur. They are closely related to the other lemurs and exclusively live on the island of Madagascar. For a time, this family was named Megaladapidae, but the current name was given precedence since the extinct genus Megaladapis was removed from the family.

<span class="mw-page-title-main">Lemur</span> Clade of primates endemic to the island of Madagascar

Lemurs are wet-nosed primates of the superfamily Lemuroidea, divided into 8 families and consisting of 15 genera and around 100 existing species. They are endemic to the island of Madagascar. Most existing lemurs are small, have a pointed snout, large eyes, and a long tail. They chiefly live in trees and are active at night.

<i>Archaeoindris</i> Extinct giant lemur

Archaeoindris fontoynontii is an extinct giant lemur and the largest primate known to have evolved on Madagascar, comparable in size to a male gorilla. It belonged to a family of extinct lemurs known as "sloth lemurs" (Palaeopropithecidae) and, because of its extremely large size, it has been compared to the ground sloths that once roamed North and South America. It was most closely related to Palaeopropithecus, the second largest type of sloth lemur. Along with the other sloth lemurs, Archaeoindris was related to the living indri, sifakas, and woolly lemurs, as well as the recently extinct monkey lemurs (Archaeolemuridae). The genus, Archaeoindris, translates to "ancient indri-like lemur", even though it probably became extinct recently, around 350 BCE.

<i>Palaeopropithecus</i> Extinct genus of lemurs

Palaeopropithecus is a recently extinct genus of large sloth lemurs from Madagascar related to living lemur species found there today. Three species are known, Palaeopropithecus ingens, P. maximus, and P. kelyus. Radiocarbon dates indicate that they may have survived until around 1300–1620 CE. Malagasy legends of the tretretretre or tratratratra are thought to refer to P. ingens.

<span class="mw-page-title-main">Monkey lemur</span> Extinct family of lemurs

The monkey lemurs or baboon lemurs (Archaeolemuridae) are a recently extinct family of lemurs known from skeletal remains from sites on Madagascar dated to 1000 to 3000 years ago.

<span class="mw-page-title-main">Sloth lemur</span> Extinct family of lemurs

The sloth lemurs (Palaeopropithecidae) comprise an extinct family of lemurs that includes four genera. The common name can be misleading, as members of Palaeopropithecidae were not closely related to sloths. This clade has been dubbed the ‘‘sloth lemurs’’ because of remarkable postcranial convergences with South American sloths. Despite postcranial similarities, the hands and feet show significant differences. Sloths possess long, curved claws, while sloth lemurs have short, flat nails on their distal phalanges like most primates.

<i>Archaeolemur</i> Extinct genus of lemurs

Archaeolemur is an extinct genus of subfossil lemurs known from the Holocene epoch of Madagascar. Archaeolemur is one of the most common and well-known of the extinct giant lemurs as hundreds of its bones have been discovered in fossil deposits across the island. It was larger than any extant lemur, with a body mass of approximately 18.2–26.5 kg (40–58 lb), and is commonly reconstructed as the most frugivorous and terrestrial of the fossil Malagasy primates. Colloquially known as a "monkey lemur," Archaeolemur has often been compared with anthropoids, specifically the cercopithecines, due to various morphological convergences. In fact, it was even misidentified as a monkey when remains were first discovered. Following human arrival to Madagascar just over 2000 years ago, many of the island’s megafauna went extinct, including the giant lemurs. Radiocarbon dating indicates that Archaeolemur survived on Madagascar until at least 1040-1290 AD, outliving most other subfossil lemurs.

<i>Pachylemur</i> Extinct genus of lemurs

Pachylemur is an extinct, giant lemur most closely related to the ruffed lemurs of genus Varecia. Two species are known, Pachylemur insignis and Pachylemur jullyi, although there is some doubt as to whether or not they may actually be the same species. Pachylemur is sometimes referred to as the giant ruffed lemur, because although it and the living ruffed lemurs had similar teeth and skeletons, Pachylemur was more robust and as much as three to four times larger. DNA studies have confirmed a sister group relationship between these two types of lemur. Like living ruffed lemurs, Pachylemur specialized in eating fruit, and was therefore an important seed disperser, possibly for tree species with seeds too large for even ruffed lemurs to swallow. In the spiny thickets of southwestern Madagascar, they were also likely to have dispersed seeds evolved to attach to fur and be carried away. Unlike ruffed lemurs, the fore- and hindlimbs of Pachylemur were nearly the same length, and therefore it was likely to be a slow, deliberate climber. However, both used hindlimb suspension to reach fruit on small branches below them.

<i>Hadropithecus</i> Extinct genus of lemurs

Hadropithecus is a medium-sized, extinct genus of lemur, or strepsirrhine primate, from Madagascar that includes a single species, Hadropithecus stenognathus. Due to its rarity and lack of sufficient skeletal remains, it is one of the least understood of the extinct lemurs. Both it and Archaeolemur are collectively known as "monkey lemurs" or "baboon lemurs" due to body plans and dentition that suggest a terrestrial lifestyle and a diet similar to that of modern baboons. Hadropithecus had extended molars and a short, powerful jaw, suggesting that it was both a grazer and a seed predator.

<i>Babakotia</i> Extinct genus of lemurs

Babakotia is an extinct genus of medium-sized lemur, or strepsirrhine primate, from Madagascar that contains a single species, Babakotia radofilai. Together with Palaeopropithecus, Archaeoindris, and Mesopropithecus, it forms the family Palaeopropithecidae, commonly known as the sloth lemurs. The name Babakotia comes from the Malagasy name for the indri, babakoto, to which it and all other sloth lemurs are closely related. Due to its mix of morphological traits that show intermediate stages between the slow-moving smaller sloth lemurs and the suspensory large sloth lemurs, it has helped determine the relationship between both groups and the closely related and extinct monkey lemurs.

<i>Mesopropithecus</i> Extinct genus of small to medium-sized lemur from Madagascar

Mesopropithecus is an extinct genus of small to medium-sized lemur, or strepsirrhine primate, from Madagascar that includes three species, M. dolichobrachion, M. globiceps, and M. pithecoides. Together with Palaeopropithecus, Archaeoindris, and Babakotia, it is part of the sloth lemur family (Palaeopropithecidae). Once thought to be an indriid because its skull is similar to that of living sifakas, a recently discovered postcranial skeleton shows Mesopropithecus had longer forelimbs than hindlimbs—a distinctive trait shared by sloth lemurs but not by indriids. However, as it had the shortest forelimbs of all sloth lemurs, it is thought that Mesopropithecus was more quadrupedal and did not use suspension as much as the other sloth lemurs.

<span class="mw-page-title-main">Evolution of lemurs</span> History of primate evolution on Madagascar

Lemurs, primates belonging to the suborder Strepsirrhini which branched off from other primates less than 63 million years ago, evolved on the island of Madagascar, for at least 40 million years. They share some traits with the most basal primates, and thus are often confused as being ancestral to modern monkeys, apes, and humans. Instead, they merely resemble ancestral primates.

<span class="mw-page-title-main">Subfossil lemur</span> Lemurs from Madagascar that are represented by recent (subfossil) remains

Subfossil lemurs are lemurs from Madagascar that are represented by recent (subfossil) remains dating from nearly 26,000 years ago to approximately 560 years ago. They include both extant and extinct species, although the term more frequently refers to the extinct giant lemurs. The diversity of subfossil lemur communities was greater than that of present-day lemur communities, ranging to as high as 20 or more species per location, compared with 10 to 12 species today. Extinct species are estimated to have ranged in size from slightly over 10 kg (22 lb) to roughly 160 kg (350 lb). Even the subfossil remains of living species are larger and more robust than the skeletal remains of modern specimens. The subfossil sites found around most of the island demonstrate that most giant lemurs had wide distributions and that ranges of living species have contracted significantly since the arrival of humans.

<span class="mw-page-title-main">Taxonomy of lemurs</span> Science of describing species and defining the evolutionary relationships between taxa of lemurs

Lemurs were first classified in 1758 by Carl Linnaeus, and the taxonomy remains controversial today, with approximately 70 to 100 species and subspecies recognized, depending on how the term "species" is defined. Having undergone their own independent evolution on Madagascar, lemurs have diversified to fill many ecological niches normally filled by other types of mammals. They include the smallest primates in the world, and once included some of the largest. Since the arrival of humans approximately 2,000 years ago, lemurs have become restricted to 10% of the island, or approximately 60,000 square kilometers (23,000 sq mi), and many face extinction. Concerns over lemur conservation have affected lemur taxonomy, since distinct species receive increased conservation attention compared to subspecies.

Plesiopithecus is an extinct genus of early strepsirrhine primate from the late Eocene.

<span class="mw-page-title-main">Berthe Rakotosamimanana</span> Malagasy primatologist and paleontologist

Berthe Rakotosamimanana was a primatologist and palaeontologist from Madagascar.

Ampasambazimba is a mountain peak and subfossil site in Madagascar, near Analavory, (Itasy) most known for being the site of the remains of the extinct giant sloth lemur Archaeoindris.

References

  1. 1 2 3 Mittermeier, Russell A.; et al. (2006). Lemurs of Madagascar (2nd ed.). Conservation International. pp. 46–49. ISBN   978-1-881173-88-5.
  2. Nowak, Ronald M. (1999). Walker's Primates of the World . Johns Hopkins University Press. p.  83. ISBN   978-0-8018-6251-9.
  3. Spoor, F; Garland Jr, T; Krovitz, G; Ryan, T. M.; Silcox, M. T.; Walker, A (2007). "The primate semicircular canal system and locomotion". Proceedings of the National Academy of Sciences. 104 (26): 10808–12. Bibcode:2007PNAS..10410808S. doi: 10.1073/pnas.0704250104 . PMC   1892787 . PMID   17576932.
  4. Wunderlich, R. E.; Simons, E. L.; Jungers, W. L. (May 1996). "New pedal remains of Megaladapis and their functional significance". American Journal of Physical Anthropology. 100 (1): 115–39. doi: 10.1002/(SICI)1096-8644(199605)100:1<115::AID-AJPA11>3.0.CO;2-3 . PMID   8859959.
  5. Perry, G.H., Orlando, L. (1 February 2015). "Ancient DNA and human evolution". Journal of Human Evolution. 79: 1–3. doi:10.1016/j.jhevol.2014.12.002. PMID   25619123.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  6. Marciniak, Stephanie; Mughal, Mehreen R.; Godfrey, Laurie R.; Bankoff, Richard J.; Randrianatoandro, Heritiana; Crowley, Brooke E.; Bergey, Christina M.; Muldoon, Kathleen M.; Randrianasy, Jeannot; Raharivololona, Brigitte M.; Schuster, Stephan C.; Malhi, Ripan S.; Yoder, Anne D.; Louis, Edward E.; Kistler, Logan; Perry, George H. (29 June 2021). "Evolutionary and phylogenetic insights from a nuclear genome sequence of the extinct, giant, "subfossil" koala lemur Megaladapis edwardsi". Proceedings of the National Academy of Sciences of the United States of America . 118 (26). Bibcode:2021PNAS..11822117M. doi: 10.1073/pnas.2022117118 . ISSN   0027-8424. PMC   8255780 . PMID   34162703.
  7. 1 2 3 Schwartz, G.T (2007). "Inferring primate growth, development and life history from dental microstructure: The case of the extinct Malagasy lemur, Megaladapis". Dental Perspectives on Human Evolution: State of the Art Research in Dental Paleoanthropology. Vertebrate Paleobiology and Paleoanthropology. Netherlands: Springer. pp. 147–162. doi:10.1007/978-1-4020-5845-5_10. ISBN   978-1-4020-5844-8.
  8. Fleagle, J.G. (1988). Primate Adaptation and Evolution. New York: Academic Press. ISBN   9780080492131.
  9. Crowley, B.E., & Godfrey, L.R. (2019). "Strontium Isotopes Support Small Home Ranges for Extinct Lemurs". Frontiers in Ecology and Evolution, 7, 490. doi: 10.1002/ajp.20817
  10. 1 2 Major, C. I. F. (1894). "On Megaladapis madagascariensis, an Extinct Gigantic Lemuroid from Madagascar; with Remarks on the Associated Fauna, and on Its Geological Age". Philosophical Transactions of the Royal Society B: Biological Sciences. 185: 15–38. Bibcode:1894RSPTB.185...15F. doi: 10.1098/rstb.1894.0002 . hdl:2027/hvd.32044107356206. JSTOR   91769.
  11. 1 2 Major, Forsyth (January 1, 1900). "Extinct Mammalia from Madagascar. I. Megaladapis insignis" (PDF). Philosophical Transactions of the Royal Society. 193 (185–193): 47–50. Bibcode:1900RSPTB.193...47F. doi: 10.1098/rstb.1900.0009 . Retrieved October 26, 2015.
  12. Jungers, W. L. (1980). "Adaptive diversity in subfossil Malagasy prosimians". Zeitschrift für Morphologie und Anthropologie. 71 (2): 177–86. doi:10.1127/zma/71/1980/177. JSTOR   25756477. PMID   6776705.
  13. Major, C. I. F. (1900). "Extinct Mammalia from Madagascar. I. Megaladapis insignis, sp. N". Philosophical Transactions of the Royal Society B: Biological Sciences. 193 (185–193): 47–50. Bibcode:1900RSPTB.193...47F. doi: 10.1098/rstb.1900.0009 . JSTOR   91919.
  14. Simons, E. L. (2003). "Chapter 6: Lemurs: Old and New". In Goodman, S. M.; Benstead, J. P. (eds.). Natural Change and Human Impact in Madagascar. University of Chicago Press. pp. 142–166. ISBN   978-0-226-30306-2.
  15. Muldoon, Kathleen M. (2010-04-01). "Paleoenvironment of Ankilitelo Cave (late Holocene, southwestern Madagascar): implications for the extinction of giant lemurs". Journal of Human Evolution. 58 (4): 338–352. doi:10.1016/j.jhevol.2010.01.005. PMID   20226497.
  16. Virah-Sawmy, Malika; Willis, Katherine J.; Gillson, Lindsey (2010). "Evidence for drought and forest declines during the recent megafaunal extinctions in Madagascar". Journal of Biogeography. 37 (3): 506–519. Bibcode:2010JBiog..37..506V. doi:10.1111/j.1365-2699.2009.02203.x. S2CID   84382916.
  17. 1 2 Scott, Rob. "The Lost Lemurs: Extinction in Madagascar." Rutgers University. Hickman Hall, New Brunswick, NJ. n.d. Lecture.
  18. Culotta, Elizabeth (1995). "Many Suspects to Blame in Madagascar Extinctions". Science. 268 (5217): 1568–1569. Bibcode:1995Sci...268.1568C. doi:10.1126/science.268.5217.1568. PMID   17754597.