Sivaladapis

Last updated

Sivaladapis
Temporal range: Middle Miocene
13.7–11.1  Ma
O
S
D
C
P
T
J
K
Pg
N
Scientific classification Red Pencil Icon.png
Kingdom: Animalia
Phylum: Chordata
Class: Mammalia
Order: Primates
Suborder: Strepsirrhini
Family: Sivaladapidae
Subfamily: Sivaladapinae
Genus: Sivaladapis
Gingerich & Sahni 1979
Type species
Sivaladapis palaeindicus
Gingerich & Sahni 1979
Species
  • S. nagriiPrasad 1970
  • S. palaeindicusPilgrim 1932

Sivaladapis is a genus of adapiform primate that lived in Asia during the middle Miocene. [1]

Contents

Sivaladapis is an extinct, adapiform primate genus that belongs to the family Sivaladapidae. [2] Two species of Sivaladapis are currently recognized, S. nagrii and S. palaeindicus. [3] [4] Sivaladapis is considered one of the latest surviving genera of adapiform primates, existing well into the Miocene of South Asia. Compared to other adapiform primates, the fossil record of Sivaladapis is limited, lacking any cranial or postcranial fossil material. The genus is known exclusively from isolated fossil teeth and partial dentaries and maxillae recovered from the Chinji Formation (Siwalik Group) of India and Pakistan. [4]

Both S. nagrii and S. palaeindicus are considered a fairly large adapiforms, with body-size estimates ranging from 2.6 to 3.4 kilograms. [5] The prominent and well-developed shearing crests on its molars and premolars suggests the genus was adapted to a predominately folivorous diet, subsisting on fibrous leaves. [4] It has been hypothesized that the extinction of Sivaladapis around 8 million years ago was the result of the immigration of leaf-eating colobine monkeys to South Asia, where they directly competed with Sivaladapis. [4]

Etymology

Sival- refers to the Middle Siwalik deposits of the Indian subcontinent, -adapis referring to the type genus of Adapiformes.

History of discovery and identification

The fossiliferous Siwalik deposits of India and Pakistan have been known to paleontologists for decades, producing a plethora of vertebrate fossils since the early 20th Century. In 1932, British paleontologist Guy E. Pilgrim described what he identified as a procyonid carnivore partial dentary collected from Lower Siwalik deposits of Pakistan, naming it Sivanasua palaeindica. [6] In his description, he identified a maximum of two lower molars, which informed his identification of the fossil as having procyonid affinities. Shortly after Pilgrim's description, G.E. Lewis of the Yale Peabody Museum recovered a single lower molar from the Nargi horizon in Middle Siwalik deposits of India. [7] He recognized the morphology of the isolated tooth as having lorisid primate affinity and named it Indraloris lulli; however, he lacked sufficient fossil material to make adequate anatomical comparisons or place it systematically. In the 1960s, Ian Tattersall of the American Museum of Natural History recognized the similarity in morphology shared between Sivanasua and Indraloris. [8]

Additional fossil material of Sivanasua recovered from Middle Siwalik deposits of India in the 1970s allowed for more direct comparison of Indraloris and Sivanasua. [9] These additional fossils demonstrated that the dental formula of Sivanasua included a maximum of three lower molars, not two as Pilgrim had initially described; a diagnostic feature of procyonid carnivores is the loss of M3, resulting in a lower dental formula including only 2 lower molars. Moreover, additional Indraloris material lacked key synapomorphies aligning it with lorisid primates (e.g., a toothcomb), which pointed to an adapiform affinity instead. Thus, the additional fossils and subsequent anatomical comparisons demonstrated that 1) Sivanasua was not a procyonid carnivore, but rather showed adapiform affinities, and 2) the Sivanasua and Indraloris are closely related but represent two distinct adapiform genera. Acknowledging its adapiform affinities, Gingerich and Sahni [3] renamed the previously identified Sivanasua material as Sivaladapis and recognized two distinct species – S. nagrii (formerly Sivanasua nagrii) [9] and S. palaeindicus (formerly Sivanasua palaeindica). [6]

Taxonomy

In the same year that Gingerich and Sahni recognized the two species of Sivaladapis, [3] Thomas and Verma placed S. narigii, S. palaeindicus, and the species belonging to the genus Indraloris in their own subfamily, Sivaladapinae, which was later promoted to the family level, Sivaladapidae. [2] [3] [4] [10] Gingerich and Sahni assigned S. nagrii as the type species for the genus. [3] The holotype for S. nagrii is represented by a partial right dentary that preserves M1-M3 (GSI 18093) collected from the Middle Siwaliks Nagri formation near Haritalyangar, India. The holotype for S. palaeindicus is represented by a partial right dentary preserving P4 and M2-M3 (GSI D-224) collected from the Lower Siwaliks Chinji formation near Chinji, Pakistan. Roughly 10 million years after the mass extinction event at the Cretaceous-Paleogene boundary that eliminated many organisms, including the non-avian dinosaurs, adapiform primates appear simultaneously in the fossil record of the Holarctic along with many other mammalian lineages that rapidly evolved and diversified. Adapiform and omomyid primates are the first true primates appearing in the earliest Eocene around 55 million years ago. [10]

Within the broader adapiform radiation, Sivaladapidae represents a monophyletic group containing several genera and species with synapomorphies distinguishing them from other recognized adapiform families. Key features differentiating sivaladapids from other adapiforms include upper molar shearing crests, the twinning of the hypolconulid and entoconid on the lower molars, and a continuous lingual cingulum on the upper molars. Within Sivaladapidae, three subfamilies are currently recognized: Hoangniinae, [11] Wailekiinae, [5] and Sivaladapinae. [2] While these subfamilies are distinguished by containing sivaladapid genera that exclusively share distinct morphology (inherited from a more recent common ancestor), the subfamilies also follow a general sequence of geologic age. For example, hoanghoniines are restricted to the Eocene, while the sivaladapiines are found exclusively from Miocene deposits. In 1998, Qi and Beard recovered new sivaladapid fossils from the Late Eocene Gongkang Formation in China that they named Guangxilemur, which they described as intermediate in morphology and age. In their phylogenetic analysis, Guangxilemur is recovered in an intermediate position between the Eocene hoanghoniines and the Miocene sivaldapiines. [12]

While much research has focused on resolving the evolutionary relationships within Sivaladapidae, [5] the phylogenetic affinities within the broader adapiform radiation are still unclear.

Description

Derived features of Sivaladapis include the following traits. Sivaladapis has a dental formula of 2.1.3.3/2.1.3.3. [2] [3] [4] The upper premolars become more molarized from front to back, and the cusps become more numerous and complex in their morphology as well. P2 is single rooted, P3 is double rooted, and P4 has three roots. The upper molars display shearing crests with a sharp ectoloph that is supported by well-developed, distinct stylar cusps that are connected via a buccal cingulum. A prominent lingual cingulum surrounds the protocone. There is no hypocone or pericone. [4]

Unlike early Eocene hoanghoniines, Sivaladapis is derived in having a fused mandible. Lower incisors are high-crowned and spatulate, and I2 is slightly larger than I1. Size differences between the few preserved lower canines in Sivaladapis suggests possible sexual dimorphism in the genus. P2 is single rooted and caniniform with a honing facet for the upper canine. P3 is double rooted with a prominent protoconid with a paracristid that orients anteriorly. Accessory crests run from the protoconid and curve at the base of the crown to short talonid. P4 is completely molarized but lacks an entoconid and has an open trigonid. The lower molars of Sivaladapis are extremely high-crowned with several prominent crests. The paraconids are reduced but crest-like, while the entoconids take on a pointed shape. [4]

Paleoecology

Given its dental morphology (i.e., the upper and lower molar cusps and crests that facilitate a combination of puncturing and shearing during occlusion), it has been inferred that Sivaladapis was well-adapted to a highly folivorous diet of fibrous leaves. Moreover, the absence of the hypocone suggests that grinding was not a functional priority for Sivaladapis. [4] Additionally, Sivaladapis fossils have been recovered in association with a gibbon-sized hominoid, suggesting the taxa inhabited a forest community. This faunal association, along with the large body size estimates and dental morphology, suggests that Sivaladapis was an arboreal folivore. Specifically, citing Kay's threshold, in which the upper limit for an insectivorous primate is around 500 grams, the body mass estimates for Sivaladapis falling between 2.6 and 3.4 kg is used as evidence to support the hypothesis that Sivaladapis was a folivore. [13] [14] However, this hypothesis remains to be tested more vigorously with additional fossil material. [3] [4]

Related Research Articles

<i>Plesiadapis</i> Extinct genus of mammals

Plesiadapis is one of the oldest known primate-like mammal genera which existed about 58–55 million years ago in North America and Europe. Plesiadapis means "near-Adapis", which is a reference to the adapiform primate of the Eocene period, Adapis. Plesiadapis tricuspidens, the type specimen, is named after the three cusps present on its upper incisors.

Oligopithecus is a fossil primate that lived in Africa during the Early Oligocene. It is represented by one species, Oligopithecus savagei, known from one jaw bone found in Egypt.

<i>Notharctus tenebrosus</i> Extinct species of mammal

Notharctus tenebrosus was an early primate from the early Eocene, some 54–38 million years ago. Its fossil was found by Ferdinand V. Hayden in 1870 in southwestern Wyoming. When first found, Notharctus tenebrosus was thought to be a small pachyderm due to the concentration of pachyderm fossils in the area. However, after Walter W. Granger's discovery of a nearly complete skeleton, also in Wyoming, it was firmly established as a primate. Notharctus tenebrosus most resembles modern-day lemurs, although they are not directly related.

<i>Smilodectes</i> Extinct genus of primates

Smilodectes is a genus of adapiform primate that lived in North America during the middle Eocene. It possesses a post-orbital bar and grasping thumbs and toes. Smilodectes has a small cranium size and the foramen magnum was located at the back of the skull, on the occipital bone.

<i>Indopithecus</i> Extinct genus of primates

Indopithecus giganteus is an extinct species of large ape that lived in the late Miocene of the Siwalik Hills in northern India. Although frequently assigned to the more well-known genus Gigantopithecus, recent authors consider it to be a distinct genus in its own right.

<span class="mw-page-title-main">Notharctinae</span> Extinct subfamily of mammals

Notharctinae is an extinct subfamily of primates that were common in North America during the early and middle Eocene. The six genera that make up the group contain species that are among the most primitive of the adapiform group, which is one of the most primitive groups of primates. The evolutionary history of this subfamily has been comparatively well documented and has been used to argue for evolutionary gradualism. Though it is generally accepted that adapiforms gave rise to modern day lemurs and lorises, it is not currently known which branch of Adapiformes these living species are most closely related to. Notharctines became extinct in the middle Eocene, most likely because of a combination of factors including climatic change and competition with other North American primates.

Hesperolemur is a genus of adapiform primate that lived in the middle Eocene of southern California. It is an immigrant taxa which appears to be most closely related to the earlier European forms of Cantius. It was approximately 4.5 kilograms (9.9 lb) in weight and was the last surviving notharctine species, probably because of its position in the refugia that existed in southern California during the climate deterioration at the end of the middle Eocene. There are no later taxa that appear to have derived from Hesperolemur.

<i>Pelycodus</i> Extinct genus of primates

Pelycodus is an extinct genus of adapiform primate that lived during the early Eocene (Wasatchian) period in Europe and North America, particularly Wyoming and New Mexico. It is very closely related to Cantius and may even be its subgenus. It may also have given rise to the Middle Eocene Uintan primate Hesperolemur, although this is controversial. From mass estimates based on the first molar, the two species, P. jarrovii and P. danielsae, weighed 4.5 kg and 6.3 kg respectively and were frugivores with an arboreal, quadrupedal locomotion.

Adapis is an extinct adapiform primate from the Eocene of Europe. While this genus has traditionally contained five species, recent research has recognized at least six morphotypes that may represent distinct species. Adapis holds the title of the first Eocene primate ever discovered. In 1821, Georges Cuvier, who is considered to be the founding father of paleontology, discovered Adapis in fissure fillings outside of Paris, France. Given its timing and appearance in the fossil record, Cuvier did not recognize the primate affinities of Adapis and first described it as a small extinct pachyderm; only later in the 19th century was Adapis identified as a primate.

<i>Europolemur</i> Extinct genus of primates

Europolemur is a genus of adapiform primates that lived in Europe during the middle Eocene.

<i>Cantius</i> Extinct genus of primates

Cantius is a genus of adapiform primates from the early Eocene of North America and Europe. It is extremely well represented in the fossil record in North America and has been hypothesized to be the direct ancestor of Notharctus in North America. The evolution of Cantius is characterized by a significant increase in body mass that nearly tripled in size. The earliest species were considered small-sized and weighed in around 1 kg, while the later occurring species were considered medium-sized and likely weighed in around 3 kg. Though significantly smaller, the fossil remains discovered of the various species of Cantius have striking similarities to that of Nothartcus and Smilodectes. It is likely Cantius relied on arboreal quadrupedal locomotion, primarily running and leaping. This locomotor pattern comparable to that of extant lemurs, which has fostered the hypothesis that Cantius and other strepsirrhine adapiforms may have a close phylogenetic affinity to living lemurs.

Dermotherium is a genus of fossil mammals closely related to the living colugos, a small group of gliding mammals from Southeast Asia. Two species are recognized: D. major from the Late Eocene of Thailand, based on a single fragment of the lower jaw, and D. chimaera from the Late Oligocene of Thailand, known from three fragments of the lower jaw and two isolated upper molars. In addition, a single isolated upper molar from the Early Oligocene of Pakistan has been tentatively assigned to D. chimaera. All sites where fossils of Dermotherium have been found were probably forested environments and the fossil species were probably forest dwellers like living colugos, but whether they had the gliding adaptations of the living species is unknown.

Azibiidae is an extinct family of fossil primate from the late early or early middle Eocene from the Glib Zegdou Formation in the Gour Lazib area of Algeria. They are thought to be related to the living toothcombed primates, the lemurs and lorisoids, although paleoanthropologists such as Marc Godinot have argued that they may be early simians. It includes the genera Azibius and Algeripithecus, the latter of which was originally considered the oldest known simian, not a strepsirrhine.

Djebelemur is an extinct genus of early strepsirrhine primate from the late early or early middle Eocene period from the Chambi locality in Tunisia. Although they probably lacked a toothcomb, a specialized dental structure found in living lemuriforms, they are thought to be a related stem group. The one recognized species, Djebelemur martinezi, was very small, approximately 100 g (3.5 oz).

<i>Afrasia djijidae</i> Eocene fossil primate from Myanmar

Afrasia djijidae is a fossil primate that lived in Myanmar approximately 37 million years ago, during the late middle Eocene. The only species in the genus Afrasia, it was a small primate, estimated to weigh around 100 grams (3.5 oz). Despite the significant geographic distance between them, Afrasia is thought to be closely related to Afrotarsius, an enigmatic fossil found in Libya and Egypt that dates to 38–39 million years ago. If this relationship is correct, it suggests that early simians dispersed from Asia to Africa during the middle Eocene and would add further support to the hypothesis that the first simians evolved in Asia, not Africa. Neither Afrasia nor Afrotarsius, which together form the family Afrotarsiidae, is considered ancestral to living simians, but they are part of a side branch or stem group known as eosimiiforms. Because they did not give rise to the stem simians that are known from the same deposits in Africa, early Asian simians are thought to have dispersed from Asia to Africa more than once prior to the late middle Eocene. Such dispersals from Asia to Africa also were seen around the same time in other mammalian groups, including hystricognathous rodents and anthracotheres.

Indraloris is a fossil primate from the Miocene of India and Pakistan in the family Sivaladapidae. Two species are now recognized: I. himalayensis from Haritalyangar, India and I. kamlialensis from the Pothohar Plateau, Pakistan. Other material from the Potwar Plateau may represent an additional, unnamed species. Body mass estimates range from about 2 kg (4.4 lb) for the smaller I. kamlialensis to over 4 kg (8.8 lb) for the larger I. himalayensis.

Muangthanhinius is a genus of adapiform primate that lived in Asia during the late Eocene.

Afradapis is a genus of adapiform primate that lived during the Late Eocene. The only known species, Afradapis longicristatus, was discovered in the Birket Qarun Formation in northern Egypt in 2009. While its geographic distribution is confined to Afro-Arabia, Afradapis belongs to the predominantly European adapiform family Caenopithecidae. This taxonomic placement is supported by recent phylogenetic analyses that recover a close evolutionary relationship between Afradapis and adapiforms, including Darwinius. While adapiforms have been noted for their strepsirrhine-like morphology, no adapiform fossil possesses the unique anatomical traits to establish an ancestor-descent relationship between caenopithecids and living strepsirrhines. It ate leaves and moved around slowly like lorises.

The Amphipithecidae were simian primates that lived in Late Eocene and Early Oligocene. Fossils have been found in Myanmar, Thailand, and Pakistan. The limited fossil evidence is consistent with, but not exclusive to, arboreal quadrupedalism. In other words, the species may have moved about in trees on four legs, but not with regular leaping as seen in later simians.

Ramadapis sahnii was a primitive primate belonging to Sivaladapidae that existed around 11 to 14 million years ago. Only a mandible was found at the dig site, which was near Ramnagar in Udhampur district in Jammu and Kashmir specifically the lower Siwalik deposits. The jawbone indicates that Ramadapis resembled a modern day ring-tailed lemur. The early lemur was named after Ashok Sahni, who discovered the first sivaladapid in the Siwalik deposits. The mandible was only around one and a quarter inch long, which led scientists to assume that it was only around 11 pounds.

References

  1. Gebo, D.L. (2002). "Adapiformes: Phylogeny and adaptation". In Hartwig, W.C. (ed.). The Primate Fossil Record. Cambridge University Press. ISBN   978-0-521-08141-2. OCLC   47254191.
  2. 1 2 3 4 Thomas, H., & Verma, S.N. (1979). Découverte d'un Primate Adapiforme (Sivaladapinae sub. fam. nov.) dans le Miocѐne moyen des Siwaliks de la région de Ramnagar (Jammu et Cachemire, Inde). C. R. Acad. Sci., 289, 833-836.
  3. 1 2 3 4 5 6 7 Gingerich, P.D., & Sahni, A., (1979). Indraloris and Sivaladapis: Miocene adapid primates from the Siwaliks of India and Pakistan. Nature, 279, 415-416.
  4. 1 2 3 4 5 6 7 8 9 10 Gingerich, P.D., & Sahni, A., (1984). Dentition of Sivaladapis nagrii (Adapidae) from the late Miocene of India. Int. J. Primato., 5, 63-79.
  5. 1 2 3 Gilbert, C.C., Patel, B.A., Singh, N.P., Campisano, C.J., Fleagle, J.G., Rust, K.L., & Patnaik, R. (2017). New sivaladapid primate from Lower Siwalik deposits surrounding Ramnagar (Jammu and Kashmir State), India. Journal of Human Evolution, 102, 21-41.
  6. 1 2 Pilgrim, G. E. (1932). The fossil Carnivora of India. Palaeont. Ind. n.s., 18, 3-332.
  7. Lewis, G.E. (1933). Preliminary notice of a new genus of lemuroid from the Siwaliks. American Journal of Science, (152), 134-138.
  8. Tattersall, I. (1968). A mandible of Indraloris (Primates,Lorisidae) from the Miocene of India. Postilla, 123, 1–10.
  9. 1 2 Prasad, K. N. (1970). The vertebrate fauna from the Siwalik beds of Haritalyangar. Pal Ind, NS, 39.
  10. 1 2 Godinot, M. (1998). A Summary of Adapiform Systematics and Phylogeny. Folia Primatologica, 69, 218-249.
  11. Gingerich, P.D., Holroyd, P.A., & Ciochon, R.L., (1994). Rencunius zhoui, a new primate from the late middle Eocene of Henan, China, and a comparison with some early Anthropoidea. In: Fleagle, J. G. and Kay, R. F. (Eds.), Anthropoid Origins (pp. 163-177). New York: Plenum Press.
  12. Qi, T., & Beard, K.C., (1998). Late Eocene sivaladapid primate from Guangi Zhuang Autonomous Region, People's Republic of China. J. Hum. Evol., 35, 211-220.
  13. Kay R. F. (1975). The functional adaptations of primate molar teeth. American Journal of Physical Anthropology, 43: 195–216.
  14. Fleagle, J. G. (2013). Primate adaptation and evolution. Academic press.