Metropolitan-Vickers F.2

Last updated

F.2/Beryl
Metropolitan-Vickers Beryl.jpg
Beryl engine preserved at Solent Sky Museum
Type Turbojet
Manufacturer Metropolitan-Vickers
First run1941
Major applications Saunders-Roe SR.A/1

The Metropolitan-Vickers F.2 is an early turbojet engine and the first British design to be based on an axial-flow compressor. It was an extremely advanced design for the era, [1] using a nine-stage axial compressor, annular combustor, and a two-stage turbine.

Contents

It first powered a Gloster Meteor in November 1943, outperforming contemporary models from Power Jets. In spite of this excellent start, it was considered unreliable and never saw use during the war. In the post-war era, a number of engines provided much higher performance, and interest in the F.2 waned.

The potential of the engine and the investment did not go to waste, however; the design was passed from Metropolitan-Vickers (MetroVick) to Armstrong Siddeley when MetroVick left the gas turbine business. Armstrong Siddeley produced a larger version as the successful Sapphire.

Development

Alan Arnold Griffith published a seminal paper in 1926, An Aerodynamic Theory of Turbine Design, that for the first time clearly demonstrated that a gas turbine could be used as a practical, and even desirable, aircraft powerplant. The paper started by demonstrating that existing axial compressor designs were "flying stalled" due to their use of flat blades, and dramatic improvements could be made by using aerofoil designs instead. It went on to outline a complete compressor and turbine design, using the extra exhaust power to drive a second turbine that would power a propeller. In today's terminology, the design was a turboprop.

In order to prove the design, Griffith and several other engineers at the Royal Aircraft Establishment built a testbed example of the compressor in 1928 known as Anne, the machinery being built for them by Fraser and Chalmers. After Anne's successful testing they planned to follow this up with a complete engine known as Betty, or B.10. As Betty was designed for test purposes, it was designed to allow the compressor and turbine sections to be run separately. To do this, the exhaust from the compressor was at the "front" of the engine, where it was piped through the combustion section to the "end" of the engine where it entered the turbine. This also meant the driveshaft between the sections was very short.

In 1929 Frank Whittle's thesis on pure jet engines was published, and after speaking to his commanding officer Whittle was taken by the Air Ministry to see Griffith. Griffith was critical of Whittle's work, identifying an error in Whittle's calculations, noting that the centrifugal compressor Whittle used would be impractical for aircraft use due to its large frontal area, and that the use of the jet exhaust directly for power would be extremely inefficient at the temperatures given. [2] Whittle was distraught but was convinced that he should patent the idea anyway. Five years later a group of investors persuaded him to start work on what would be the first working British jet engine.

Griffith continued development of his own concepts, eventually developing an advanced compressor design using two contra-rotating stages that improved efficiency. His partner, Hayne Constant, started discussions in 1937 with Manchester-based Metrovick, a maker of steam turbines, to produce the new machinery. By 1939 this work had developed several improved versions of the Betty compressor design, which were incorporated into the new Freda. Incidentally, Metrovick had recently merged with British Thomson-Houston, another turbine builder who were supporting Whittle's efforts.

In April 1939, Whittle gave a startling demonstration of his experimental engine, the WU, running it for 20 minutes at high power. This led to a rash of contracts to build a production quality design suitable for aircraft use. Metrovick's head of design, David Smith, decided to end development of the turboprop concepts and focus on pure-jets instead. Development had just started when Whittle started building his W.1 design, planning to install one for flight in the Gloster E.28/39 the next year.

F.1

In July 1940 the RAE signed a contract with Metrovick to build a flight-quality pure-turbojet engine based on the Freda turbine. This emerged as the F.1 concept, which was built in several forms, with the first running engine starting on the testbed in late 1941. The design cleared its special-category flight-tests in 1942, and flew for the first time on 29 June 1943 in the open bomb bay of an Avro Lancaster. Compared to the centrifugal-flow Whittle designs, the F.1 was extremely advanced, using a nine-stage axial compressor, annular combustion chamber, and a two-stage turbine. [1]

F.2

Development of the F.2 turbojet progressed rapidly, and the engine ran for the first time in November 1941. By that time, there were a number of engines in development based on the Whittle concept, but the F.2 looked considerably more capable than any of them. A flyable version, the F.2/1, received its test rating in 1942. One was fitted to an Avro Lancaster test-bed (the first prototype Lancaster, s/n BT308), mounted at the rear in place of the rear turret, with a single air intake on the top of the fuselage, in front of the twin tail plane. The aircraft first flew on 29 June 1943. [3] Production quality versions of the F.2 were tested on the F.9/40M (Gloster Meteor) s/n DG204/G, which made its first flight on 13 November 1943. They were installed in underslung nacelles, in a manner similar to the engines of the Messerschmitt Me 262. [1]

As expected, the F.2 engines were more powerful than the Whittle design, first delivering 1,800 lbf (8,000 N), but soon scaling up to well over 2,000 lbf (8,900 N). Around that time, the Whittle W.2B was developing only 1,600 lbf (7,100 N). However, there were doubts about the reliability of the F.2, mainly due to problems associated with hot spots building up on the turbine bearing and combustion chamber, which caused warping and fracturing of the turbine inlet nozzles.

The axial compressor of the F.2 was later offered to Rolls-Royce and used as the initial stage of the Rolls-Royce Clyde. [4]

F.2/2

To address these problems, in August 1942 a minor redesign delivered the F.2/2, which changed the turbine material from Rex 75 to Nimonic 75, and lengthened the combustion chamber by 6 inches (150 mm). Thrust was improved to 2,400 lbf (11,000 N) static, but the problems with overheating remained.

F.2/3

Another attempt to solve the overheating problems resulted in the more highly modified F.2/3 during 1943. This version replaced the original annular combustion chamber with can-type burners like those on the Whittle designs. This appears to have solved the problems, raising the thrust to 2,700 lbf (12,000 N) in the process. However, by this time it was decided to move on to a much more powerful version of the engine.

F.2/4 Beryl

Development of the F.2 continued on a version using a ten-stage compressor for additional airflow driven by a single stage turbine. [5] [1] The new F.2/4 - the Beryl - initially developed 3,250 lbf (14.5 kN) and was test flown in Avro Lancaster Mk.II s/n LL735 before being installed in the Saunders-Roe SR.A/1 flying boat fighter. Thrust had already improved to 3,850 lbf (17.1 kN) for the third prototype, and eventually settled at 4,000 lbf (18 kN).

In comparison, the contemporary Derwent 5 developed over 3,600 lbf (16.0 kN) of thrust in its final form. Development of the SR.A/1 ended in 1947, ending development of the Beryl along with it. Nevertheless, later on a Beryl from the SR.A/1 prototype was removed and used by Donald Campbell for early runs in his famous 1955 Bluebird K7 hydroplane in which he set seven water speed records between 1955 and 1964.

F.3

In 1942 MV started work on thrust augmentation. The resulting Metropolitan-Vickers F.3 was the first British turbofan engine to be designed, built and tested. It could be said that the F.3 was also the first three-shaft jet engine to be built, although the configuration was completely different from that of the much later Rolls-Royce RB211 turbofan series, since the fan was located at the rear of the engine, not unlike that of the General Electric CJ805-23. Using a stock F.2/2, MV added a separate module to the rear of the engine (directly behind the HP turbine) which comprised contra-rotating LP turbines attached to two contra-rotating fans. [6] Apart from the first stage nozzle guide vanes, the LP turbine was completely statorless, with four consecutive rotor stages. Rotors one and three drove the front fan clockwise (viewed from the front), whereas the rear fan was driven anticlockwise by rotors two and four. Although the front fan had inlet guide vanes, there were no vanes between the contra-rotating fan rotors or, downstream, any exit guide vanes. The core and bypass streams exhausted through separate coaxial propelling nozzles.

The project was generally successful, raising static thrust from around 2,400 to 4,000 lbf (11 to 18 kN) (4,600 lbf (20 kN) in 1947). Furthermore, specific fuel consumption fell from 1.05 to 0.65 lb/(lbf⋅h) (30 to 18 g/(kN⋅s)), which was the true aim of the project. The weight increase for all the extra turbomachinery and ducting was significant, however. A bonus was a marked decrease in noise levels which resulted from the slower, cold air from the fan mixing with the fast, hot exhaust from the gas generator.

Although the F.3 progressed nicely, development was curtailed by the pressures of war. When the war ended the F.2/2 was no longer current, so some of the ideas were applied to the more up-to-date F.2/4 to produce the Metropolitan-Vickers F.5 propfan.

F.5

Following on where the F.3 left off, the F.5 was a version of the F.2/4 with an open rotor (unducted) thrust augmenter added to the end of the jet pipe, somewhat remote from the HP turbine The 5 ft 6 in diameter fixed pitch propellers, which contra-rotated, were driven by a four-stage statorless LP turbine unit, similar to that of the F.3. Static thrust increased from the 3,500lbf of the F.2/2 to in excess of 4,710 lbf (21,000 N), with a corresponding reduction in specific fuel consumption. Relative to the parent turbojet, the weight increase for this prop fan configuration was about 26%, compared to 53% for the F.3 turbofan. [7] Development was cancelled when they sold their gas turbine business to Armstrong Siddeley in 1946.

F.9 Sapphire

Development of the F.2 ended in 1944. Development of the basic concept continued, however, eventually leading to the considerably larger F.9 Sapphire. However, in 1947, Metrovick left jet engine production and their design team moved to Armstrong Siddeley. The Sapphire matured into a successful design, initially besting the power of its Rolls-Royce contemporary, the Avon. Design features of the Metrovick line were worked into Armstrong Siddeley's own line of axial compressor turboprops, although Armstrong Siddeley dropped Metrovick's use of gemstone names for their engines in favour of continuing with animal names, in particular snakes.

An example of the prototype engine can be found in the Science Museum Flight Gallery in London.

Engines on display

A Metrovick Beryl is on display at the Rolls-Royce Heritage Trust (Derby).

Specifications (F.2/2)

On display at the Rolls-Royce Heritage Trust (Derby) Metrovic Beryl.jpg
On display at the Rolls-Royce Heritage Trust (Derby)

Data fromWilkinson. [8]

General characteristics

Components

Performance

See also

Comparable engines

Related lists

Related Research Articles

<span class="mw-page-title-main">Turbofan</span> Airbreathing jet engine designed to provide thrust by driving a fan

A turbofan or fanjet is a type of airbreathing jet engine that is widely used in aircraft propulsion. The word "turbofan" is a combination of the preceding generation engine technology of the turbojet, and a reference to the additional fan stage added. It consists of a gas turbine engine which achieves mechanical energy from combustion, and a ducted fan that uses the mechanical energy from the gas turbine to force air rearwards. Thus, whereas all the air taken in by a turbojet passes through the combustion chamber and turbines, in a turbofan some of that air bypasses these components. A turbofan thus can be thought of as a turbojet being used to drive a ducted fan, with both of these contributing to the thrust.

<span class="mw-page-title-main">Turbojet</span> Airbreathing jet engine which is typically used in aircraft

The turbojet is an airbreathing jet engine which is typically used in aircraft. It consists of a gas turbine with a propelling nozzle. The gas turbine has an air inlet which includes inlet guide vanes, a compressor, a combustion chamber, and a turbine. The compressed air from the compressor is heated by burning fuel in the combustion chamber and then allowed to expand through the turbine. The turbine exhaust is then expanded in the propelling nozzle where it is accelerated to high speed to provide thrust. Two engineers, Frank Whittle in the United Kingdom and Hans von Ohain in Germany, developed the concept independently into practical engines during the late 1930s.

<span class="mw-page-title-main">Rolls-Royce Olympus</span> Supersonic turbojet engine with afterburner

The Rolls-Royce Olympus was the world's second two-spool axial-flow turbojet aircraft engine design, first run in May 1950 and preceded only by the Pratt & Whitney J57, first-run in January 1950. It is best known as the powerplant of the Avro Vulcan and later models in the Concorde SST.

<span class="mw-page-title-main">Rolls-Royce Conway</span> 1950s British turbofan aircraft engine family

The Rolls-Royce RB.80 Conway was the first turbofan jet engine to enter service. Development started at Rolls-Royce in the 1940s, but the design was used only briefly, in the late 1950s and early 1960s, before other turbofan designs replaced it. The Conway engine was used on versions of the Handley Page Victor, Vickers VC10, Boeing 707-420 and Douglas DC-8-40.

<span class="mw-page-title-main">Rolls-Royce Nene</span> 1940s British turbojet aircraft engine

The Rolls-Royce RB.41 Nene is a 1940s British centrifugal compressor turbojet engine. The Nene was a complete redesign, rather than a scaled-up Rolls-Royce Derwent, with a design target of 5,000 lbf (22 kN), making it the most powerful engine of its era. First run in 1944, it was Rolls-Royce's third jet engine to enter production, and first ran less than 6 months from the start of design. It was named after the River Nene in keeping with the company's tradition of naming its jet engines after rivers.

<span class="mw-page-title-main">Rolls-Royce Avon</span> 1940s British turbojet aircraft engine

The Rolls-Royce Avon was the first axial flow jet engine designed and produced by Rolls-Royce. Introduced in 1950, the engine went on to become one of their most successful post-World War II engine designs. It was used in a wide variety of aircraft, both military and civilian, as well as versions for stationary and maritime power.

<span class="mw-page-title-main">Rolls-Royce Derwent</span> 1940s British turbojet aircraft engine

The Rolls-Royce RB.37 Derwent is a 1940s British centrifugal compressor turbojet engine, the second Rolls-Royce jet engine to enter production. It was an improved version of the Rolls-Royce Welland, which itself was a renamed version of Frank Whittle's Power Jets W.2B. Rolls-Royce inherited the Derwent design from Rover when they took over their jet engine development in 1943.

<span class="mw-page-title-main">Rolls-Royce Welland</span> Turbojet aircraft engine, Britains first production jet

The Rolls-Royce RB.23 Welland was Britain's first production jet engine. It entered production in 1943 for the Gloster Meteor. The name Welland is taken from the River Welland, in keeping with the Rolls-Royce policy of naming early jet engines after rivers based on the idea of continuous flow, air through the engine and water in a river.

Alan Arnold Griffith, was an English engineer and the son of Victorian science fiction writer George Griffith. Among many other contributions, he is best known for his work on stress and fracture in metals that is now known as metal fatigue, as well as being one of the first to develop a strong theoretical basis for the jet engine. Griffith's advanced axial-flow turbojet engine designs were integral in the creation of Britain's first operational axial-flow turbojet engine, the Metropolitan-Vickers F.2, which first ran successfully in 1941. Griffith, however, had little direct involvement in actually producing the engine, after he moved in 1939 from leading the engine department at the Royal Aircraft Establishment to start work at Rolls-Royce.

This article outlines the important developments in the history of the development of the air-breathing (duct) jet engine. Although the most common type, the gas turbine powered jet engine, was certainly a 20th-century invention, many of the needed advances in theory and technology leading to this invention were made well before this time.

<span class="mw-page-title-main">Armstrong Siddeley Sapphire</span> 1940s British turbojet aircraft engine

The Armstrong Siddeley Sapphire is a British turbojet engine that was produced by Armstrong Siddeley in the 1950s. It was the ultimate development of work that had started as the Metrovick F.2 in 1940, evolving into an advanced axial flow design with an annular combustion chamber that developed over 11,000 lbf (49 kN). It powered early versions of the Hawker Hunter and Handley Page Victor, and every Gloster Javelin. Production was also started under licence in the United States by Wright Aeronautical as the J65, powering a number of US designs. The Sapphire's primary competitor was the Rolls-Royce Avon.

<span class="mw-page-title-main">Snecma Atar</span> Turbojet aircraft engine

The Snecma Atar is a French axial-flow turbojet engine built by Snecma. It was derived from the German World War II BMW 018 design, and developed by ex-BMW engineers through a progression of more powerful models. The name is derived from its original design group, Atelier technique aéronautique de Rickenbach near Lindau within the French Occupation Zone of Germany. The Atar powered many of the French post-war jet aircraft, including the Vautour, Étendard and Super Étendard, Super Mystère and several models of the Mirage.

<span class="mw-page-title-main">General Electric J85</span> Turbojet aircraft engine

The General Electric J85 is a small single-shaft turbojet engine. Military versions produce up to 3,500 lbf (16 kN) of thrust dry; afterburning variants can reach up to 5,000 lbf (22 kN). The engine, depending upon additional equipment and specific model, weighs from 300 to 500 pounds. It is one of GE's most successful and longest in service military jet engines, with the civilian versions having logged over 16.5 million hours of operation. The United States Air Force plans to continue using the J85 in aircraft through 2040. Civilian models, known as the CJ610, are similar but supplied without an afterburner and are identical to non-afterburning J85 variants, while the CF700 adds a rear-mounted fan for improved fuel economy.

<span class="mw-page-title-main">Armstrong Siddeley ASX</span> 1940s British turbojet aircraft engine

The Armstrong Siddeley ASX was an early axial flow jet engine built by Armstrong Siddeley that first ran in April 1943. Only a single prototype was constructed, and it was never put into production. A turboprop version as the ASP was somewhat more successful, and as the Armstrong Siddeley Python saw use in the Westland Wyvern.

Between 1936 and 1940 Alan Arnold Griffith designed a series of turbine engines that were built under the direction of Hayne Constant at the Royal Aircraft Establishment (RAE). The designs were advanced for the era, typically featuring a "two-spool" layout with high- and low-pressure compressors that individually had more stages than typical engines of the era. Although advanced, the engines were also difficult to build, and only the much simpler "Freda" design would ever see production, as the Metrovick F.2 and later the Armstrong Siddeley Sapphire. Much of the pioneering work would be later used in Rolls-Royce designs, starting with the hugely successful Rolls-Royce Avon.

<span class="mw-page-title-main">Rolls-Royce/Snecma Olympus 593</span> 1960s British/French turbojet aircraft engine

The Rolls-Royce/Snecma Olympus 593 was an Anglo-French turbojet with reheat, which powered the supersonic airliner Concorde. It was initially a joint project between Bristol Siddeley Engines Limited (BSEL) and Snecma, derived from the Bristol Siddeley Olympus 22R engine. Rolls-Royce Limited acquired BSEL in 1966 during development of the engine, making BSEL the Bristol Engine Division of Rolls-Royce.

<span class="mw-page-title-main">General Electric J73</span> 1950s American turbojet engine

The General Electric J73 turbojet was developed by General Electric from the earlier J47 engine. Its original USAF designation was J47-21, but with innovative features including variable inlet guide vanes, double-shell combustor case, and 50% greater airflow was redesignated J73. Its only operational use was in the North American F-86H.

<span class="mw-page-title-main">Power Jets W.1</span>

The Power Jets W.1 was a British turbojet engine designed by Frank Whittle and Power Jets. The W.1 was built under contract by British Thomson-Houston (BTH) in the early 1940s. It is notable for being the first British jet engine to fly, as the "Whittle Supercharger Type W1", powering the Gloster E.28/39 on its maiden flight at RAF Cranwell on 15 May 1941. The W.1 was superseded by the Power Jets W.2.

<span class="mw-page-title-main">Power Jets W.2</span> British turbojet engine

The Power Jets W.2 was a British turbojet engine designed by Frank Whittle and Power Jets Ltd. Like the earlier Power Jets W.1, the reverse-flow combustion configuration included a double-sided centrifugal compressor, 10 combustion chambers and an axial-flow turbine with air-cooled disc. It entered production as the Rolls-Royce Welland and was the first UK jet engine to power operational aircraft, the Gloster Meteor.

The Power Jets WU was a series of three very different experimental jet engines produced and tested by Frank Whittle and his small team in the late 1930s.

References

  1. 1 2 3 4 "Armstrong Siddeley Sapphire", Flight, 6 January 1956, pp. 17-22.
  2. Golley Whittle, the true story 1987 pp32-33
  3. "Avro Lancaster". The Future of Aviation. Retrieved 15 April 2019.
  4. "World Encyclopedia of Aero Engines – 5th edition" by Bill Gunston, Sutton Publishing, 2006, P.195
  5. "Metropolitan Vickers, the Gas Turbine, and the State: A SocioTechnical History, 1935-1960" (PDF). Retrieved 29 September 2020.
  6. "Metrovick F3 Cutaway - Pictures & Photos on FlightGlobal Airspace". Flightglobal.com. 7 November 2007. Retrieved 5 March 2012.
  7. "Metrovick F.5", Flight, 2 January 1947, p. 18.
  8. Wilkinson, Paul H. (1946). Aircraft Engines of the world 1946. London: Sir Isaac Pitman & Sons. pp. 288–289.