Mogroside

Last updated
Structural formula of mogroside 2 E Mogroside II E.gif
Structural formula of mogroside 2 E

A mogroside is a glycoside of cucurbitane derivatives found in certain plants, such as the fruit of the gourd vine Siraitia grosvenorii (known as monkfruit or luohan guo). [1] [2] Mogrosides are extracted from S. grosvenorii and used in the manufacture of sugar substitutes. [1] [2]

Contents

Mogrosides

Structural formula of mogroside V Mogrosid V.svg
Structural formula of mogroside V
Structural formula of mogroside VI Mogroside VI.gif
Structural formula of mogroside VI

Mogrosides include: [1] [2] [ failed verification ][ citation needed ]

Mogroside V is the main component of Siraitia grosvenorii fruit, constituting 0.5% to 1.4% of the dried fruit.[ citation needed ] [3]

Biosynthesis

One analysis of 200 candidate genes of Siraitia grosvenorii revealed five enzyme families involved in the synthesis of mogroside V: squalene epoxidases, triterpenoid synthases, epoxide hydrolases, cytochrome P450s, and UDP-glucosyltransferases. [1] The metabolic pathway for mogroside biosynthesis involves an initial stage of fruit development when squalene is metabolized to di-glucosylated, tetra-hydroxycucurbitadienols, then during fruit maturation, branched glucosyl groups are added and catalyzed, leading to the sweet M4, M5, and M6 mogrosides. [1]

Stability

Mogroside V appears to be heat stable in the range of 100 to 150 degrees Celsius for 4 hours and up to 8 hours in boiling water. It is stable at a pH of between 3 and 12 when stored from 2 to 8 degrees Celsius. [4]

Uses

Some mogrosides are used in traditional Chinese medicine [2] and some are extracted for manufacturing as sweeteners. [1] Mogroside V extract from S. grosvenorii fruit is 250 times sweeter than sucrose, [1] sold commercially in Norbu (sweetener).

Related Research Articles

<span class="mw-page-title-main">Aspartame</span> Artificial non-saccharide sweetener

Aspartame is an artificial non-saccharide sweetener 200 times sweeter than sucrose and is commonly used as a sugar substitute in foods and beverages. It is a methyl ester of the aspartic acid/phenylalanine dipeptide with brand names NutraSweet, Equal, and Canderel. Aspartame was approved by the US Food and Drug Administration (FDA) in 1974, and then again in 1981, after approval was revoked in 1980.

<span class="mw-page-title-main">Stevia</span> Sweetener and sugar substitute

Stevia is a sweet sugar substitute extracted from the leaves of the plant species Stevia rebaudiana native to Paraguay and Brazil.

<span class="mw-page-title-main">Sucralose</span> Chemical compound

Sucralose is an artificial sweetener and sugar substitute. As the majority of ingested sucralose is not metabolized by the body, it adds no calories. In the European Union, it is also known under the E number E955. It is produced by chlorination of sucrose, selectively replacing three of the hydroxy groups—in the C1 and C6 positions of fructose and the C4 position of glucose—to give a 1,6-dichloro-1,6-dideoxyfructose–4-chloro-4-deoxygalactose disaccharide. Sucralose is about 320 to 1,000 times sweeter than sucrose, three times as sweet as both aspartame and acesulfame potassium, and twice as sweet as sodium saccharin.

<span class="mw-page-title-main">Splenda</span> Brand of sugar substitute

Splenda is a global brand of sugar substitutes and reduced-calorie food products. While the company is known for its original formulation containing sucralose, it also manufactures items using natural sweeteners such as stevia, monk fruit and allulose. It is owned by the American company Heartland Food Products Group. The high-intensity sweetener ingredient sucralose used in Splenda Original is manufactured by the British company Tate & Lyle.

<span class="mw-page-title-main">Fructose</span> Simple ketonic monosaccharide found in many plants

Fructose, or fruit sugar, is a ketonic simple sugar found in many plants, where it is often bonded to glucose to form the disaccharide sucrose. It is one of the three dietary monosaccharides, along with glucose and galactose, that are absorbed by the gut directly into the blood of the portal vein during digestion. The liver then converts both fructose and galactose into glucose, so that dissolved glucose, known as blood sugar, is the only monosaccharide present in circulating blood.

<span class="mw-page-title-main">Sorbitol</span> Chemical compound

Sorbitol, less commonly known as glucitol, is a sugar alcohol with a sweet taste which the human body metabolizes slowly. It can be obtained by reduction of glucose, which changes the converted aldehyde group (−CHO) to a primary alcohol group (−CH2OH). Most sorbitol is made from potato starch, but it is also found in nature, for example in apples, pears, peaches, and prunes. It is converted to fructose by sorbitol-6-phosphate 2-dehydrogenase. Sorbitol is an isomer of mannitol, another sugar alcohol; the two differ only in the orientation of the hydroxyl group on carbon 2. While similar, the two sugar alcohols have very different sources in nature, melting points, and uses.

<span class="mw-page-title-main">Sugar substitute</span> Sugarless food additive intended to provide a sweet taste

A sugar substitute is a food additive that provides a sweetness like that of sugar while containing significantly less food energy than sugar-based sweeteners, making it a zero-calorie or low-calorie sweetener. Artificial sweeteners may be derived through manufacturing of plant extracts or processed by chemical synthesis. Sugar substitute products are commercially available in various forms, such as small pills, powders, and packets.

<span class="mw-page-title-main">Xylitol</span> Synthetic sweetener

Xylitol is a chemical compound with the formula C
5
H
12
O
5
, or HO(CH2)(CHOH)3(CH2)OH; specifically, one particular stereoisomer with that structural formula. It is a colorless or white crystalline solid that is freely soluble in water. It can be classified as a polyalcohol and a sugar alcohol, specifically an alditol. The name derives from Ancient Greek: ξύλον, xyl[on] 'wood', with the suffix -itol used to denote sugar alcohols.

<span class="mw-page-title-main">Thaumatin</span> Low-calorie sweetener and flavor modifier

Thaumatin is a low-calorie sweetener and flavor modifier. The protein is often used primarily for its flavor-modifying properties and not exclusively as a sweetener.

<span class="mw-page-title-main">Neohesperidin dihydrochalcone</span> Chemical compound

Neohesperidin dihydrochalcone, sometimes abbreviated to neohesperidin DC or simply NHDC, is an artificial sweetener derived from citrus.

<span class="mw-page-title-main">Erythritol</span> Chemical compound

Erythritol (, ) is an organic compound, the naturally occurring achiral meso four-carbon sugar alcohol (or polyol). It is the reduced form of either D- or L-erythrose and one of the two reduced forms of erythrulose. It is used as a food additive and sugar substitute. It is synthesized from corn using enzymes and fermentation. Its formula is C
4
H
10
O
4
, or HO(CH2)(CHOH)2(CH2)OH.

<span class="mw-page-title-main">Mannitol</span> Chemical compound

Mannitol is a type of sugar alcohol used as a sweetener and medication. It is used as a low calorie sweetener as it is poorly absorbed by the intestines. As a medication, it is used to decrease pressure in the eyes, as in glaucoma, and to lower increased intracranial pressure. Medically, it is given by injection or inhalation. Effects typically begin within 15 minutes and last up to 8 hours.

<i>Stevia rebaudiana</i> Species of flowering plant

Stevia rebaudiana is a plant species in the genus Stevia of the family Asteraceae. It is commonly known as candyleaf, sweetleaf or sugarleaf.

<span class="mw-page-title-main">Sweetness</span> Basic taste

Sweetness is a basic taste most commonly perceived when eating foods rich in sugars. Sweet tastes are generally regarded as pleasurable. In addition to sugars like sucrose, many other chemical compounds are sweet, including aldehydes, ketones, and sugar alcohols. Some are sweet at very low concentrations, allowing their use as non-caloric sugar substitutes. Such non-sugar sweeteners include saccharin and aspartame. Other compounds, such as miraculin, may alter perception of sweetness itself.

<i>Siraitia grosvenorii</i> Sweet plant fruit extract

Siraitia grosvenorii, also known as monk fruit, monkfruit or luohan guo, is a herbaceous perennial vine of the gourd family, Cucurbitaceae. It is native to southern China. The plant is cultivated for its fruit extract, called mogrosides, which creates a sweetness sensation 250 times stronger than sucrose. Mogroside extract has been used as a low-calorie sweetener for drinks and in traditional Chinese medicine.

<span class="mw-page-title-main">Isomaltulose</span> Chemical compound

Isomaltulose is a disaccharide carbohydrate composed of glucose and fructose. It is naturally present in honey and sugarcane extracts and is also produced industrially from table sugar (sucrose) and used as a sugar alternative.

<span class="mw-page-title-main">Steviol glycoside</span> Sweet chemicals derived from the Stevia plant

Steviol glycosides are the chemical compounds responsible for the sweet taste of the leaves of the South American plant Stevia rebaudiana (Asteraceae) and the main ingredients of many sweeteners marketed under the generic name stevia and several trade names. They also occur in the related species S. phlebophylla and in the plant Rubus chingii (Rosaceae).

<span class="mw-page-title-main">Pentadin</span>

Pentadin, a sweet-tasting protein, was discovered and isolated in 1989, in the fruit of oubli, a climbing shrub growing in some tropical countries of Africa. Sweet tasting proteins are often used in the treatment of diabetes, obesity, and other metabolic disorders that one can experience. These proteins are isolated from the pulp of various fruits, typically found in rain forests and are also used as low calorie sweeteners that can enhance and modify existing foods.

<span class="mw-page-title-main">Siamenoside I</span> Chemical compound

Siamenoside is a cucurbitane, a natural sweetener from the fruit of Siraitia grosvenorii combined with neomogroside. The mixture is about 300 times sweeter than sucrose. It is used as a natural sweetener in China.

<span class="mw-page-title-main">Added sugar</span> Caloric sweeteners added to food and beverages

Added sugars or free sugars are sugar carbohydrates added to food and beverages at some point before their consumption. These include added carbohydrates, and more broadly, sugars naturally present in honey, syrup, fruit juices and fruit juice concentrates. They can take multiple chemical forms, including sucrose, glucose (dextrose), and fructose.

References

  1. 1 2 3 4 5 6 7 Itkin, M.; Davidovich-Rikanati, R.; Cohen, S.; Portnoy, V.; Doron-Faigenboim, A.; Oren, E.; Freilich, S.; Tzuri, G.; Baranes, N.; Shen, S.; Petreikov, M.; Sertchook, R.; Ben-Dor, S.; Gottlieb, H.; Hernandez, A.; Nelson, D. R.; Paris, H. S.; Tadmor, Y.; Burger, Y.; Lewinsohn, E.; Katzir, N.; Schaffer, A. (2016). "The biosynthetic pathway of the nonsugar, high-intensity sweetener mogroside V from Siraitia grosvenorii". Proceedings of the National Academy of Sciences of the United States of America. 113 (47): E7619–E7628. doi: 10.1073/pnas.1604828113 . PMC   5127336 . PMID   27821754.
  2. 1 2 3 4 Subhuti Dharmananda (January 2004), "Luo han guo - Sweet fruit used as sugar substitute and medicinal herb". Institute for Traditional Medicine, Portland, Oregon.
  3. Li C, Lin L, Sui F, Jiang T (2014). "Chemistry and pharmacology of Siraitia grosvenorii: a review". Chinese Journal of Natural Medicines . 12 (2): 89–102. doi:10.1016/S1875-5364(14)60015-7. PMID   24636058.
  4. Younes, Maged; Aquilina, Gabriele; Engel, Karl‐Heinz; Fowler, Paul; Frutos Fernandez, Maria Jose; Fürst, Peter; Gürtler, Rainer; Gundert‐Remy, Ursula; Husøy, Trine; Mennes, Wim; Moldeus, Peter; Oskarsson, Agneta; Shah, Romina; Waalkens‐Berendsen, Ine; Wölfle, Detlef; Degen, Gisela; Herman, Lieve; Gott, David; Leblanc, Jean-Charles; Giarola, Alessandra; Rincon, Ana Maria; Tard, Alexandra; Castle, Laurence (11 December 2019). "Safety of use of Monk fruit extract as a food additive in different food categories". EFSA Journal. 17 (12). doi: 10.2903/j.efsa.2019.5921 . PMC   7008860 . PMID   32626208.