Uridine diphosphate

Last updated
Uridine diphosphate
Uridindiphosphat protoniert.svg
Uridine diphosphate anion 3D ball.png
Names
IUPAC name
Uridine 5′-(trihydrogen diphosphate)
Systematic IUPAC name
[(2R,3S,4R,5R)-5-(2,4-Dioxo-3,4-dihydropyrimidin-1(2H)-yl)-3,4-dihydroxyoxolan-2-yl]methyl trihydrogen diphosphate
Identifiers
ChEMBL
ChemSpider
ECHA InfoCard 100.000.372 OOjs UI icon edit-ltr-progressive.svg
MeSH Uridine+diphosphate
PubChem CID
UNII
  • InChI=1S/C9H12N2O6.2H3O4P/c12-3-4-6(14)7(15)8(17-4)11-2-1-5(13)10-9(11)16;2*1-5(2,3)4/h1-2,4,6-8,12,14-15H,3H2,(H,10,13,16);2*(H3,1,2,3,4)/t4-,6-,7-,8-;;/m1../s1 Yes check.svgY
    Key: PMPFLUWUGZHTOK-WFIJOQBCSA-N Yes check.svgY
Properties
C9H14N2O12P2
Molar mass 404.161
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
X mark.svgN  verify  (what is  Yes check.svgYX mark.svgN ?)

Uridine diphosphate, abbreviated UDP, is a nucleotide diphosphate. It is an ester of pyrophosphoric acid with the nucleoside uridine. UDP consists of the pyrophosphate group, the pentose sugar ribose, and the nucleobase uracil.

UDP is an important factor in glycogenesis. Before glucose can be stored as glycogen in the liver and muscles, the enzyme UDP-glucose pyrophosphorylase forms a UDP-glucose unit by combining glucose 1-phosphate with uridine triphosphate, cleaving a pyrophosphate ion in the process. Then, the enzyme glycogen synthase combines UDP-glucose units to form a glycogen chain. The UDP molecule is cleaved from the glucose ring during this process and can be reused by UDP-glucose pyrophosphorylase. [1] [2]

See also

Related Research Articles

<span class="mw-page-title-main">Nucleotide</span> Biological molecules constituting nucleic acids

Nucleotides are organic molecules composed of a nitrogenous base, a pentose sugar and a phosphate. They serve as monomeric units of the nucleic acid polymers – deoxyribonucleic acid (DNA) and ribonucleic acid (RNA), both of which are essential biomolecules within all life-forms on Earth. Nucleotides are obtained in the diet and are also synthesized from common nutrients by the liver.

<span class="mw-page-title-main">Uridine</span> One of the five major nucleosides in nucleic acids

Uridine (symbol U or Urd) is a glycosylated pyrimidine analog containing uracil attached to a ribose ring (or more specifically, a ribofuranose) via a β-N1-glycosidic bond. The analog is one of the five standard nucleosides which make up nucleic acids, the others being adenosine, thymidine, cytidine and guanosine. The five nucleosides are commonly abbreviated to their symbols, U, A, dT, C, and G, respectively. However, thymidine is more commonly written as 'dT' ('d' represents 'deoxy') as it contains a 2'-deoxyribofuranose moiety rather than the ribofuranose ring found in uridine. This is because thymidine is found in deoxyribonucleic acid (DNA) and usually not in ribonucleic acid (RNA). Conversely, uridine is found in RNA and not DNA. The remaining three nucleosides may be found in both RNA and DNA. In RNA, they would be represented as A, C and G whereas in DNA they would be represented as dA, dC and dG.

<span class="mw-page-title-main">Uridine triphosphate</span> Chemical compound

Uridine-5′-triphosphate (UTP) is a pyrimidine nucleoside triphosphate, consisting of the organic base uracil linked to the 1′ carbon of the ribose sugar, and esterified with tri-phosphoric acid at the 5′ position. Its main role is as substrate for the synthesis of RNA during transcription. UTP is the precursor for the production of CTP via CTP synthetase. UTP can be biosynthesized from UDP by Nucleoside Diphosphate Kinase after using the phosphate group from ATP. UDP + ATP ⇌ UTP + ADP; both UTP and ATP are energetically equal.

<span class="mw-page-title-main">Glucose 6-phosphate</span> Chemical compound

Glucose 6-phosphate is a glucose sugar phosphorylated at the hydroxy group on carbon 6. This dianion is very common in cells as the majority of glucose entering a cell will become phosphorylated in this way.

A salvage pathway is a pathway in which a biological product is produced from intermediates in the degradative pathway of its own or a similar substance. The term often refers to nucleotide salvage in particular, in which nucleotides are synthesized from intermediates in their degradative pathway.

Glycogenesis is the process of glycogen synthesis, in which glucose molecules are added to chains of glycogen for storage. This process is activated during rest periods following the Cori cycle, in the liver, and also activated by insulin in response to high glucose levels.

<span class="mw-page-title-main">Glucose 1-phosphate</span> Chemical compound

Glucose 1-phosphate is a glucose molecule with a phosphate group on the 1'-carbon. It can exist in either the α- or β-anomeric form.

<span class="mw-page-title-main">Nucleic acid metabolism</span> Process

Nucleic acid metabolism is a collective term that refers to the variety of chemical reactions by which nucleic acids are either synthesized or degraded. Nucleic acids are polymers made up of a variety of monomers called nucleotides. Nucleotide synthesis is an anabolic mechanism generally involving the chemical reaction of phosphate, pentose sugar, and a nitrogenous base. Degradation of nucleic acids is a catabolic reaction and the resulting parts of the nucleotides or nucleobases can be salvaged to recreate new nucleotides. Both synthesis and degradation reactions require multiple enzymes to facilitate the event. Defects or deficiencies in these enzymes can lead to a variety of diseases.

<span class="mw-page-title-main">Uridine diphosphate glucose</span> Chemical compound

Uridine diphosphate glucose is a nucleotide sugar. It is involved in glycosyltransferase reactions in metabolism.

<span class="mw-page-title-main">UTP—glucose-1-phosphate uridylyltransferase</span> Class of enzymes

UTP—glucose-1-phosphate uridylyltransferase also known as glucose-1-phosphate uridylyltransferase is an enzyme involved in carbohydrate metabolism. It synthesizes UDP-glucose from glucose-1-phosphate and UTP; i.e.,

<span class="mw-page-title-main">Deoxyuridine monophosphate</span> Chemical compound

Deoxyuridine monophosphate (dUMP), also known as deoxyuridylic acid or deoxyuridylate in its conjugate acid and conjugate base forms, respectively, is a deoxynucleotide.

<span class="mw-page-title-main">UDP-glucuronate decarboxylase</span> Class of enzymes

The enzyme UDP-glucuronate decarboxylase (EC 4.1.1.35) catalyzes the chemical reaction

Nucleotide sugars are the activated forms of monosaccharides. Nucleotide sugars act as glycosyl donors in glycosylation reactions. Those reactions are catalyzed by a group of enzymes called glycosyltransferases.

<span class="mw-page-title-main">Nucleoside-diphosphatase</span> Group of proteins having nucleoside-diphosphatase activity

In enzymology, a nucleoside-diphosphatase (EC 3.6.1.6) is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">Glucose-1-phosphate thymidylyltransferase</span>

In enzymology, a glucose-1-phosphate thymidylyltransferase is an enzyme that catalyzes the chemical reaction

In enzymology, a glucuronate-1-phosphate uridylyltransferase is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">UDP-N-acetylglucosamine diphosphorylase</span> Class of enzymes

In enzymology, an UDP-N-acetylglucosamine diphosphorylase is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">UTP—hexose-1-phosphate uridylyltransferase</span> Class of enzymes

In enzymology, an UTP—hexose-1-phosphate uridylyltransferase is an enzyme that catalyzes the chemical reaction

In enzymology, an UTP-monosaccharide-1-phosphate uridylyltransferase is an enzyme that catalyzes the chemical reaction

In enzymology, an UTP—xylose-1-phosphate uridylyltransferase is an enzyme that catalyzes the chemical reaction

References

  1. Glycogen Biochemistry
  2. "Biochemistry Pathways: Polysaccharide Synthesis". Archived from the original on 2015-04-10. Retrieved 2014-09-20.