UGGT

Last updated
UDP-Glucose Glycoprotein Glucosyltransferase
Chaetomium Thermophilum UGGT.png
Chaetomium thermophilum UGGT PDB: PDB: PDB: PDB:
Identifiers
SymbolUGGT
UniProt G0SB58
Other data
Locus Chr. 2 {{{Arm}}}{{{Band}}}{{{LocusSupplementaryData}}}
Search for
Structures Swiss-model
Domains InterPro

UGGT, or UDP-glucose:glycoprotein glucosyltransferase, is a soluble enzyme resident in the lumen of the endoplasmic reticulum (ER). [1]

The main function of UGGT is to recognize misfolded glycoproteins and transfer a glucose (Glc) monomer (monoglucosylate) to the terminal mannose of the A-branch of the glycan on the glycoprotein. It uses UDP-glucose (UDP-Glc) as the glucosyl donor and requires calcium ions for its activity:

misfolded-glycoprotein-Asn-GlcNAc2Man9 + UDP-Glc => misfolded-glycoprotein-Asn-GlcNAc2Man9Glc1 + UDP

UGGT is about 170 kDa and it consists of two structurally independent portions: a variable N-terminal portion of ~1200 amino acids, which in turn comprises 4 thioredoxin-like domains and two beta-sandwich domains, and senses glycoprotein misfolding; and a highly conserved C-terminal catalytic portion of ~300 amino acids, folding as a glucosyltransferase domain belonging to fold family GT24. Higher eukaryotes possess two isoforms, UGGT1 and UGGT2, but only in 2020 the latter was conclusively shown to be active in misfolded glycoprotein recognition [2]

UGGT is part of the ER quality control system of glycoprotein folding and its activity increases the potential for correctly folded glycoproteins. [3] The main proteins involved in the ER quality control system are UGGT, the ER lectin chaperones (calnexin and calreticulin), and glucosidase II. UGGT first recognizes the incompletely folded glycoprotein and monoglucosylates it. The lectins, calnexin and calreticulin, have high affinities for monoglucosylated proteins and the ER chaperones that associate with these lectins assist the folding of the misfolded glycoprotein. Subsequently, glucosidase II will deglucosylate the glycoprotein. If the glycoprotein is still misfolded, UGGT will re-glucosylate it and allow it to go through the cycle again.

Currently, it is unclear how UGGT recognizes misfolded glycoprotein. It has been proposed that UGGT may bind to exposed hydrophobic stretches, a characteristic feature of misfolded proteins. UGGT crystal structures [4] and Molecular Dynamics simulations [5] suggest marked conformational mobility, which could explain the ability of the protein to recognise a wide variety of client glycoproteins of different shapes and forms. The same conformational mobility could account for the ability of the protein to re-glucosylate N-linked glycans at different distances from the misfold site. See for example the picture in which glycoproteins are symbolized by nuts and UGGT by an adjustable wrench.

UGGT-is-like-a-wrench-glycoproteins-like-nuts UGGT-is-like-a-wrench-glycoproteins-like-nuts.png
UGGT-is-like-a-wrench-glycoproteins-like-nuts

Related Research Articles

<span class="mw-page-title-main">Calreticulin</span> Soluble protein

Calreticulin also known as calregulin, CRP55, CaBP3, calsequestrin-like protein, and endoplasmic reticulum resident protein 60 (ERp60) is a protein that in humans is encoded by the CALR gene.

<span class="mw-page-title-main">Glycoprotein</span> Protein with oligosaccharide modifications

Glycoproteins are proteins which contain oligosaccharide chains covalently attached to amino acid side-chains. The carbohydrate is attached to the protein in a cotranslational or posttranslational modification. This process is known as glycosylation. Secreted extracellular proteins are often glycosylated.

<span class="mw-page-title-main">Chaperone (protein)</span> Proteins assisting in protein folding

In molecular biology, molecular chaperones are proteins that assist the conformational folding or unfolding of large proteins or macromolecular protein complexes. There are a number of classes of molecular chaperones, all of which function to assist large proteins in proper protein folding during or after synthesis, and after partial denaturation. Chaperones are also involved in the translocation of proteins for proteolysis.

A congenital disorder of glycosylation is one of several rare inborn errors of metabolism in which glycosylation of a variety of tissue proteins and/or lipids is deficient or defective. Congenital disorders of glycosylation are sometimes known as CDG syndromes. They often cause serious, sometimes fatal, malfunction of several different organ systems in affected infants. The most common sub-type is PMM2-CDG where the genetic defect leads to the loss of phosphomannomutase 2 (PMM2), the enzyme responsible for the conversion of mannose-6-phosphate into mannose-1-phosphate.

<span class="mw-page-title-main">Mannose</span> Chemical compound

Mannose is a sugar monomer of the aldohexose series of carbohydrates. It is a C-2 epimer of glucose. Mannose is important in human metabolism, especially in the glycosylation of certain proteins. Several congenital disorders of glycosylation are associated with mutations in enzymes involved in mannose metabolism.

<span class="mw-page-title-main">Calnexin</span> Mammalian protein found in Homo sapiens

Calnexin (CNX) is a 67kDa integral protein (that appears variously as a 90kDa, 80kDa, or 75kDa band on western blotting depending on the source of the antibody) of the endoplasmic reticulum (ER). It consists of a large (50 kDa) N-terminal calcium-binding lumenal domain, a single transmembrane helix and a short (90 residues), acidic cytoplasmic tail.

The terms glycans and polysaccharides are defined by IUPAC as synonyms meaning "compounds consisting of a large number of monosaccharides linked glycosidically". However, in practice the term glycan may also be used to refer to the carbohydrate portion of a glycoconjugate, such as a glycoprotein, glycolipid, or a proteoglycan, even if the carbohydrate is only an oligosaccharide. Glycans usually consist solely of O-glycosidic linkages of monosaccharides. For example, cellulose is a glycan composed of β-1,4-linked D-glucose, and chitin is a glycan composed of β-1,4-linked N-acetyl-D-glucosamine. Glycans can be homo- or heteropolymers of monosaccharide residues, and can be linear or branched.

<span class="mw-page-title-main">Endoplasmic-reticulum-associated protein degradation</span>

Endoplasmic-reticulum-associated protein degradation (ERAD) designates a cellular pathway which targets misfolded proteins of the endoplasmic reticulum for ubiquitination and subsequent degradation by a protein-degrading complex, called the proteasome.

<i>N</i>-Acetylmannosamine Chemical compound

N-Acetylmannosamine is a hexosamine monosaccharide. It is a neutral, stable naturally occurring compound. N-Acetylmannosamine is also known as N-Acetyl-D-mannosamine monohydrate,, N-Acetyl-D-mannosamine which can be abbreviated to ManNAc or, less commonly, NAM). ManNAc is the first committed biological precursor of N-acetylneuraminic acid. Sialic acids are the negatively charged, terminal monosaccharides of carbohydrate chains that are attached to glycoproteins and glycolipids (glycans).

The unfolded protein response (UPR) is a cellular stress response related to the endoplasmic reticulum (ER) stress. It has been found to be conserved between mammalian species, as well as yeast and worm organisms.

<span class="mw-page-title-main">PDIA3</span>

Protein disulfide-isomerase A3 (PDIA3), also known as glucose-regulated protein, 58-kD (GRP58), is an isomerase enzyme. This protein localizes to the endoplasmic reticulum (ER) and interacts with lectin chaperones calreticulin and calnexin (CNX) to modulate folding of newly synthesized glycoproteins. It is thought that complexes of lectins and this protein mediate protein folding by promoting formation of disulfide bonds in their glycoprotein substrates.

<span class="mw-page-title-main">UDP-glucose 4-epimerase</span> Class of enzymes

The enzyme UDP-glucose 4-epimerase, also known as UDP-galactose 4-epimerase or GALE, is a homodimeric epimerase found in bacterial, fungal, plant, and mammalian cells. This enzyme performs the final step in the Leloir pathway of galactose metabolism, catalyzing the reversible conversion of UDP-galactose to UDP-glucose. GALE tightly binds nicotinamide adenine dinucleotide (NAD+), a co-factor required for catalytic activity.

<span class="mw-page-title-main">DPAGT1</span>

UDP-N-acetylglucosamine—dolichyl-phosphate N-acetylglucosaminephosphotransferase is an enzyme that in humans is encoded by the DPAGT1 gene.

<i>N</i>-linked glycosylation

N-linked glycosylation, is the attachment of an oligosaccharide, a carbohydrate consisting of several sugar molecules, sometimes also referred to as glycan, to a nitrogen atom, in a process called N-glycosylation, studied in biochemistry. This type of linkage is important for both the structure and function of many eukaryotic proteins. The N-linked glycosylation process occurs in eukaryotes and widely in archaea, but very rarely in bacteria. The nature of N-linked glycans attached to a glycoprotein is determined by the protein and the cell in which it is expressed. It also varies across species. Different species synthesize different types of N-linked glycan.

GalNAc5-diNAcBac-PP-undecaprenol beta-1,3-glucosyltransferase is an enzyme with systematic name UDP-alpha-D-glucose:(GalNAc-alpha- )4-GalNAc-alpha-(1->3)-diNAcBac-diphospho-tritrans,heptacis-undecaprenol 3-beta-D-glucosyltransferase. This enzyme catalyses the following chemical reaction

Mannosyl-oligosaccharide glucosidase (MOGS) (EC 3.2.1.106, processing alpha-glucosidase I,Glc3Man9NAc2 oligosaccharide glucosidase, trimming glucosidase I, GCS1) is an enzyme with systematic name mannosyl-oligosaccharide glucohydrolase. MOGS is a transmembrane protein found in the membrane of the endoplasmic reticulum of eukaryotic cells. Biologically, it functions within the N-glycosylation pathway.

<i>O</i>-GlcNAc

O-GlcNAc is a reversible enzymatic post-translational modification that is found on serine and threonine residues of nucleocytoplasmic proteins. The modification is characterized by a β-glycosidic bond between the hydroxyl group of serine or threonine side chains and N-acetylglucosamine (GlcNAc). O-GlcNAc differs from other forms of protein glycosylation: (i) O-GlcNAc is not elongated or modified to form more complex glycan structures, (ii) O-GlcNAc is almost exclusively found on nuclear and cytoplasmic proteins rather than membrane proteins and secretory proteins, and (iii) O-GlcNAc is a highly dynamic modification that turns over more rapidly than the proteins which it modifies. O-GlcNAc is conserved across metazoans.

<span class="mw-page-title-main">Peptide loading complex</span>

The peptide-loading complex (PLC) is a short-lived, multisubunit membrane protein complex that is located in the endoplasmic reticulum (ER). It orchestrates peptide translocation and selection by major histocompatibility complex class I (MHC-I) molecules. Stable peptide-MHC I complexes are released to the cell surface to promote T-cell response against malignant or infected cells. In turn, T-cells recognize the activated peptides, which could be immunogenic or non-immunogenic.

John J. M. Bergeron, is a Canadian cell biologist and biochemist. He is an Emeritus Robert Reford Professor of Anatomy and Professor of Medicine at McGill University in Montreal, Quebec, Canada. He is a Rhodes Scholar. He is best known for the discovery of calnexin, endosomal signalling and organellar proteomics.

Armando J. Parodi is an Argentinian glycobiologist. He did his initial education at the School of Sciences of the University of Buenos Aires. His PhD work was done under Luis Federico Leloir, a recipient of the Nobel Prize in Chemistry for his work involving the finding of sugar nucleotides and how they play a role in the making of oligosaccharides and polysaccharides. He also pursued postdoc work at the Pasteur Institute in Paris, France and Duke University in Durham, NC, USA.

References

  1. Parodi AJ, Caramelo JJ, D'Alessio C (2014). "UDP-glucose: glycoprotein glucosyltransferase 1, 2 (UGGT1, 2).". In Taniguchi N, Honke K, Fukuda M, Narimatsu H, Yamaguchi Y, Angata T (eds.). Handbook of Glycosyltransferases and Related Genes. Japan, Tokyo: Springer. pp. 15–30. doi:10.1007/978-4-431-54240-7_107. ISBN   978-4-431-54240-7.
  2. Adams BM, Canniff NP, Guay KP, Larsen IS, Hebert DN (December 2020). "Quantitative glycoproteomics reveals cellular substrate selectivity of the ER protein quality control sensors UGGT1 and UGGT2". eLife. 9. doi:10.7554/eLife.63997. PMC   7771966 . PMID   33320095.
  3. Dejgaard S, Nicolay J, Taheri M, Thomas DY, Bergeron JJ (January 2004). "The ER glycoprotein quality control system". Current Issues in Molecular Biology. 6 (1): 29–42. PMID   14632257.
  4. Roversi P, Marti L, Caputo AT, Alonzi DS, Hill JC, Dent KC, et al. (August 2017). "Interdomain conformational flexibility underpins the activity of UGGT, the eukaryotic glycoprotein secretion checkpoint". Proceedings of the National Academy of Sciences of the United States of America. 114 (32): 8544–8549. doi: 10.1073/pnas.1703682114 . PMC   5559018 . PMID   28739903.
  5. Modenutti CP, Blanco Capurro JI, Ibba R, Alonzi DS, Song MN, Vasiljević S, et al. (December 2020). "Clamping, bending, and twisting inter-domain motions in the misfold-recognizing portion of UDP-glucose:glycoprotein glucosyltransferase". Structure. 29 (4): 357–370.e9. doi: 10.1016/j.str.2020.11.017 . PMC   8024514 . PMID   33352114.